• Title/Summary/Keyword: Calcite mineral

Search Result 247, Processing Time 0.033 seconds

Environmental Geochemical Study on Talc for the Application as Mineral Drug (약광물로서의 활용을 위한 활석에 대한 환경지화학적 연구)

  • 이재영
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.599-609
    • /
    • 1999
  • Talc durg has been used at Oriental Medical Hospital of Kyung San University, and was analysed for mineralogical and geochemical studies. It consists mainly of talc with small amount of tremolite, dolomite and bursite, and its chemical compositions of MgO 31.65% and $SiO_2$ 61.0%, and cotain less inpurtities. Moreover, talc from the Dong Yang Talc mine is associated with calcite, gypsum and anhydrite, which belong to more soluble mineral drugs than talc, and contains Ca and Fe. These elements may give at least medical medical to talc durg as in the case of actinolite. Therfore, talc of high quality from the Dong Yang Tacl Mine may be used instead of imported expensive talc durg. Diagrams of log $a_{Mg^{2+}}$-pH and log $a_{Mg^{2+}}/a{\array{2\\H^+} $-log $a_{H_4SiO_4}$- may be used as basic data to predict and examine soluble contents of durg for medical experiments.

  • PDF

Low-Sulfidation Epithermal Gold Deposits in East China: Characteristics, Types, and Setting

  • Mao, Jing-Wen;Li, Xiao-Feng;Zhang, Zuo-Heng
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.15-18
    • /
    • 2003
  • We preliminarily describe the basic characteristics of the low-sulfidation epithermal gold deposits in East China. It can be divided into granite- and alkaline rock-related types. These gold deposits are structurally controlled by caldera, craters, diatremes and related faults, hosted in volcanic rocks, and characterized by alterations of adularia, chalcedony, quartz, sericite and calcite assemblages. The ore-forming ages are within three pulses of 180-188 Ma, 135-141 Ma, and ca. 120 Ma, which are geodynamically corresponding the collision orogenic process between North China and Yangtze cratons, transformation of the tectonic regime, and delamination of the lithosphere, respectively.

  • PDF

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

Weathering Characteristics of Sedimentary Rocks Affected by Periodical Submerging (주기적으로 침수되는 퇴적암의 풍화특성)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • The weathering characteristics of periodically submerged sedimentary rocks in the Sayeon dam, Ulsan was examined by field work, electron probe micro-analysis, X-ray diffraction, and X-ray fluorescence spectrometry. Analysis of fracture zone and exfoliation showed the submerged sedimentary rocks have undergone severe mechanical weathering. Mechanical weathering in the water-rock interface accelerated chemical weathering, such as dissolution and alteration of the most of minerals except for quartz in the weathering zone. The dissolution of carbonates specially calcite, is remarkable creating the cavities, whereas formation of minerals including clay minerals is not active. The sedimentary rocks have been periodically submerged for a certain period of time, and have repeated freezing and thawing. This mechanical weathering favored infiltration, which accelerated mineral dissolution. The high content of easily soluble carbonate of the sedimentary rocks is likely the major cause of intense chemical weathering. The dissolved elements within the infiltrated water interrupted the occurrence of clay and weathering minerals, and expend fractures by infiltrated water accelerated weathering process.

Mineral Paragenesis and Fluid Inclusions of the Dongbo Tungsten-Molybdenum Deposits (동보(東寶) 중석(重石)-모리브덴 광상(鑛床)의 광물공생(鑛物共生)과 유체포유물(流體包有物))

  • Park, Hee-In;Moon, Sang Ho;Bea, Young Boo
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.331-342
    • /
    • 1985
  • The Dongbo tungsten-molybdenum deposits are fissure-filling veins emplaced in granites of late Cretaceous age. Integrated field, mineralogic and fluid inclusion studies were undertaken to illuminate the characters and origin of the ore deposits. Mineral paragenesis is complicated by repeated fracturing, but four distinct depositional stages can be recognized; (I) tungsten-molybdenum minerals-quartz-chlorite stage, (II) iron-oxide and sulfides-quartz stage, (III) iron -oxide-base metal sulfides-sulfosalts-quartz-carbonates stage, (IV) barren rhodochrosite-zeolite stage. Fluid inclusion studies were carried out for stage I quartz and stage III quartz, sphalerite and calcite. Fluid inclusion studies reveals highly systematic trends of homogenization temperature and salinity throughout the mineralization. Ore fluids during stage I were complex, NaCl rich brine and salinity reached values as high as 34.4 weight percent equivalent NaCl, but the later ore fluids were more dilute and reached to 9.7 weight percent equivalent NaCl during stage III. Intermittent boiling of ore fluid during stage I is indicated by the fluid inclusions in stage I quartz. Depositional temperatures and pressures during stage I range from $520^{\circ}C$ to $265^{\circ}C$and from 600 to 400 bars. Homogenization temperatures of the stage III quartz, sphalerite and calcite range from $305^{\circ}C$ to $190^{\circ}C$. Fluid inclusion data from the Dongbo mine are nearly similar to those from other hydrothermal tungsten deposits in the Kyeongsang basin. Depositional temperature and salinity of ore fluids during precipitation of tungsten-molybdenum minerals in Dongbo mine were much higher, but $CO_2$ contents were much lower than those from hydrothermal tungsten-molybdenum deposits of late Cretaceous plutonic association in central parts of Korean peninsula.

  • PDF

Fluid Inclusions of Daehwa and Donsan Tungsten-Molybdenum Deposits (대화(大華) 및 돈산(敦山) 중석(重石)·모리브덴 광상(鑛床)의 유체포유물(流體包有物))

  • Park, Hee-In;Choi, Suck-Won;Kim, Deog-Lae
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.225-237
    • /
    • 1985
  • Mineralization of Daehwa and Donsan W-Mo deposits can be devided into three distinct depositional stages on the basis of mineral paragenesis and flnid inclusion studies; stage I, deposition of oxides and silicates ; stage II, deposition of base-metal sulfides and sulfosalts with carbonates; stage III, deposition of barren calcite and fluorite. Tungsten, molybdenum and tin mineralization occurred in stage I. Fluid inclusion studies reveal that ore fluid of stage I were homogeneous $H_2O-CO_2$ fluids containing 3.5~14.6 mol % $CO_2$. Minimum temperature and pressure of stage I ore fluids were $240^{\circ}C$ and 500 bars respectively. Salinities of aqueous type I inclusions in minerals of stage I range from 3.7 to 7.6 wt. % equi. NaCl. whereas those of $CO_2$-containing type III inclusions range from 0.3 to 4.4 wt. %. Temperatures of stage II ore fluids range from 200 to $305^{\circ}C$ on the whole and salinities were in the range of 3.2~7.2 wt. %. Homogenization temperatures of fluid inclusions in calcite and fluorite of stage III range from 114 to $186^{\circ}C$ and salinities were in the range of 0.9~4.3 wt. %. Sulfur fugacities during stage II deduced from mineral assemblages and tamperature data from fluid inclusions declined from earlier to later in the range of $10^{-11}{\sim}10^{-18}atm$. Fluid inclusion evidences suggest that the dominance of $CO_2$ in ore fluid during W-Mo mineralization is the characteristic features of Cretaceous W-Mo deposits of central district of Korea compared to those of Kyeongsang basin district.

  • PDF

Carbonation Treatment of EAF Slag for Using Aggregate of Concrete (EAF-Slag의 콘크리트용(用) 골재(骨材)로의 활용(活用)을 위한 탄산화(炭酸化) 처리(處理) 연구(硏究))

  • Yoo, Kwang-Suk;Ahn, Ji-Whan;Lee, Kyung-Hoon
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.36-41
    • /
    • 2009
  • The objectives of this study are focusing on the issue with efficiently recycling for EAF slag as construction material such as an aggregate of concrete. This study can be classified mainly into two categories: the first section is the carbonation treatment of Electric Arc Furnace(EAF)-slag for obtaining soundness as using aggregate of concrete. And the second section is the application of carbonated EAF-slag on the mortar test to evaluate the stability and mechanical property, which is compressive strength, according to the replacement of EAF-slag on the mortar. It was known that pH of EAF-Slagle according to carbonation time decreases drastically to 7 within several sec of carbonation, and a calcite is formed on the surface of EAF slag. The formation of calcite during the carbonation process of EAF slag lead to fill at pore in the texture of EAF-Slag surface, and than the porosity of EAF-slag decreases with carbonation process. In the mortar test, compressive strength, according to the replacement of EAF-Slag to sand on the mortar, the compressive strength of mortar increased as the 50% replacement ratio of EAF slag for sand was above 10% higher than that of reference mortar according to 50% replacement of EAF slag.

A Study on the Synthesis of Calcium Lactate Using Precipitated Calcium Carbonate (침강성 탄산칼슘을 이용한 젖산칼슘 합성에 관한 연구)

  • Park, Joo-Won;Cho, Kye-Hong;Park, Jin-Koo;Ahn, Ji-Whan;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.173-178
    • /
    • 2008
  • Calcium lactate was prepared by reacting lactic acid with precipitated calcium carbonate (PCC) which was prepared by carbonation process (calcite) and solution process (aragonite). Effects of PCC morphology (calcite and aragonite) on calcium lactate by the solution process were investigated experimentally. Despite the slow forming rate at the initial stage, the final yield of calcium lactate appeared higher when calcite was used. Therefore, the maximum yield of calcium lactate using aragonite was 85.0% and that using calcite was 88.7%, respectively. For both cases, the optimum temperature for the preparation appeared at around $60^{\circ}C$. Furthermore, the increase in lactic acid concentration over 2.0 mol% increased slurry viscosity and deteriorated mass transfer, which resulted in low yield of calcium lactate for both cases. SEM analyses showed that the prepared calcium lactate appeared as plate-like crystal form, irrespective of PCC morphologies, reaction temperatures, and concentrations of lactic acid.

Isotope Geochemistry of Uranium Ore Deposits in Okcheon Metamorphic Belt, South Korea (옥천변성대내(沃川變成帶內)에 분포(分布)하는 우라늄광상(鑛床)의 동위원소(同位元素) 지구화학적(地球化學的) 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.163-173
    • /
    • 1986
  • Black and graphite slates from the Okcheon metamorphic belt contain enriched values of uranium (average 200~250ppm) and molybdenum (average 150~200ppm). Uranium mineralization is closely associated with quartz and sulfide veinlets which are formed diagenetically in graphite slate. The uranium minerals were concentrated in outer part of graphite nodules. The ${\delta}^{13}C$ values of organic carbon from the metasediments including uranium bearing graphite slate range from -15.2 to -26.1‰ with a mean of -23.5‰. Meanwhile, ${\delta}^{13}C$ values of coal and coaly shale from some Paleozoic coal fields of South Korea vary from -19.4 to -23.9‰ with an average of -22.5‰. Isotopic compositions of vein calcite in uranium bearing slate range from -13.4 to -15.4‰ in ${\delta}^{13}C$ and +11.3 to +15.1‰ in ${\delta}^{18}O$ could indicate a reduced organic carbon source isotopically exchanged with a graphite of biogenic origin. Metamorphic temperature determined by a calcite-graphite isotope geothermometer was 383~$433^{\circ}C$ which corresponded to greenschist facies by Miyashiro (1973) and is consistent with metamorphic facies estimated by mineral assemblages (Lee, et al., 1981, and Kim, 1971). The fixation of uranyl species by carbonaceous matter in marine epicontinental environment, and remobilization of organouranium by diagenetic processes have attributed to the enrichment of uranium and heavy metals in the graphite slate of Okcheon metamorphic belt.

  • PDF

Stable Isotope and Fluid Inclusion Studies of the Mugug Au-Ag Mineral Deposits (무극 금은 광상에 대한 유체포유물 및 안정동위원소 분석연구)

  • Kim, Kyu-Han;Kim, Ok-Joon;Chang, Weon-Sun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • A couple of Au-Ag-bearing epithermal quartz veins of Cretaceous(87.9Ma) in age are developed in the Cretaceous(112Ma) granodiorite batholith which was emplaced in Mesozoic Baegyari sedimentary formation. Au minerals consist mostly of electrum with a 54.2-61.9 wt% Au and are closely associated with sulfide minerals including pyrite, chalcopyrite, pyrrhotite, galena and sphalerite. Homogenization temperatures of fluid inclusions in quartz, fluorite and calcite are $196-368^{\circ}C$ (avg. $240^{\circ}C$), $74-176^{\circ}C$ (avg. $115^{\circ}C$) and $75-200^{\circ}C$ (avg. $119^{\circ}C$) respectively. Sulfur isotopic compositions( +5- +8‰) of ore sulfides indicate a deep-seated sulfur origin. Oxygen isotope compositions of different stages of quartz vary from +5.6 to +9.3‰ and calculated ${\delta}^{18}O$ values of ore fluid at $250^{\circ}C$ range from -3.2 to +0.4‰, reflecting an isotopically evolved ore fluid mixed with a $^{18}O$ depleted meteoric water under the variable mixing ratios between hydrothermal and meteoric waters. Isotopic data of calcite minerals support the above conclusions.

  • PDF