• Title/Summary/Keyword: Calciner

Search Result 5, Processing Time 0.034 seconds

Advanced New Process Development of Two-Stage Swirl Calciner

  • Suh, Hyung-Suhk;Park, Choon-Keun;Ryu, Jae-Sang;Kwak, Hong-Bae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.296-302
    • /
    • 1999
  • The state of the art of the 2-stage swirl calciner is to make 2-stage counter gas flow in a calciner with cooler hot air. Gas flow in the calciner increases retention time of raw mix particles. Simple structure of the 2-stage swirl calciner operated optimally the rotary cement kiln. In this study, in order to decide the entrance type of the cooler air of the optimal calciner model, an entrance cooler air velocity, the input points of raw mix were analyzed in many aspects with cold model experiment and computational fluidized dynamic simulation. It was found that the entrance type of cooler air fully splite 2-stage for the optimal condition of the cold model calciner. The operation conditions were that the input feeding, the cooler air velocity and the air velocity of throat were 0.33kg/$\textrm m$3$, 15m/s and 20m/s respectively. The performance of 150 t/d the pilot plant connected with the kiln rising duct was that volume capacity of the calciner is over 430 kg/$\textrm m$3$-h, decarbonation rate of raw mix apparently 90%, heat consumption 950 kcal/kg-cli and retention time of raw mix 2.4 sec. Its the best operating condition is cooler air velocity 18m/s, the gas velocity of throat 25m/s, feeding rate of raw mix 10t/h. The operating experience of the pilot plant confirmed the success of scale up for over 3000 t-cli/d.

  • PDF

Performance Evaluation of a Multistage-Cyclone Pre-heating Calciner and a Rotary Kiln Calciner: Case of a Cement Process (다단사이클론 예열소성로와 로터리킬른 소성로의 성능 모형평가: 시멘트공정사례)

  • Eom, Taegyu;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.14-27
    • /
    • 2015
  • Calcination, which represents thermal decomposition of $CaCO_3$, is the key reaction in a cement process. Some reactions including heating-up also take place simultaneously in the calcination reactors. Basic thermal performance and dimensions of the reactors in two cases, which are a rotary kiln wih a four-stage cyclone pre-heater and a simple single rotary kiln, were compared. To employ the heat transfer, mass transfer and reaction rate as well as calcination, one-dimensional modeling was conducted in each case. Some simplification about the reactors was described, however, the reliable Nusselt number and heat transfer coefficients on the reactors were used to make results reliable.

Calcination Properties of Cement Raw Meal and Limestone with Oxidation/Reduction Condition (산화/환원 소성분위기에서 석회석 및 시멘트 원료물질의 소성거동 특성)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.64-72
    • /
    • 2020
  • When the multi-stage combustion process is applied to the cement kiln to reduce nitrogen oxide emissions in the cement industry, oxidation/reduction section that can increase combustion efficiency by reducing NOx to NO and completely burning unburned materials is essential In this study, when applied the oxidation/reduction system of the cement kiln preheater and calciner, the optimal oxidation/reduction calcination crisis that can secure the quality stability of the final product, cement clinker, was to be observed macroscopically, and the mass change of raw materials according to the burning conditions, decarbonation rate, and calcination rate were investigated. The results showed that the thermal decomposition of raw materials tends to be promoted in the oxidation condition rather than in the reduction condition, and that the thermal decomposition of limestone, which has a relatively high CaO content, is carried out later than that of cement raw meal, which is thought to be caused by the CO2 fractionation in the kiln. The thermal decomposition properties of raw materials according to oxidation/reducing burning condition showed a relatively large difference in temperature range lower than normal limestone themal decomposition temperature, which is thought to be expected to improve the thermal efficiency of raw materials according to the formation of oxidation condition in the section 750℃ of burning temperature. However, for this study, lab scale. Because there is a difference from the field process as a scale study, it is deemed necessary to verify the actual test results of the pilot scale.

Case Study on NOx Emissions from Cement Kiln before and after Applying Multi-stage Combustion Technology (다단연소 기술 적용 전후 시멘트 소성설비의 NOx 배출 사례 연구)

  • Jae-Won, Choi;Ju-Ik Back;Jang-Jung Kim;Phil-Sung Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • The cement industry has been contributing to solve the wastes problem by using various combustible wastes as alternative fuel to replace natural coal. To use more alternative fuels such as waste plastics, in the cement manufacturing process, it is necessary to stably burn alternative fuels and reduce air emissions such as NOx. This study is a case study on the multi-stage combustion calciner process, which is a technology that decreases the amount of NOx while increasing the use of alternative fuels. This study is a case study on the multi-stage combustion process, a technology that reduces the amount of harmful air emissions such as NOx while increasing the use of alternative fuels. Along results of comparing before and after applying the technology to actual cement manufacturing facilities, the amount of coal consumption decreased by 38 %, waste plastics consumption increased by 122 %, and NOx emissions decreased by 17 %. Results show that increasing the use of alternative fuels and reducing NOx emissions by multi-stage combustion is effective.