• Title/Summary/Keyword: Caissons

Search Result 52, Processing Time 0.016 seconds

Proposal of Sliding Stability Assessment Formulas for an Interlocking Caisson Breakwater under Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 미끌림 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Recently, the possibility of abnormal waves of which height is greater than design wave height have been increased due to the climate change, and therefore it has been urgent to secure the stability for harbor structures. As a countermeasure for improving the stability of conventional caisson breakwaters, a method has been proposed in which adjacent caissons are interlocked with each other to consecutively resist the abnormal wave forces. In order to reflect this research trend, the reduction effect of the maximum wave force resulted from introducing a long caisson has been presented in the revision to the design criteria for ports and fishing harbors and commentary. However, no method has been proposed to evaluate the stability of interlocking caisson breakwater. In this study, we consider the effect of the phase difference of the oblique incidence of the wave based on the linear wave theory and apply the Goda pressure formula for considering design wave pressure distribution in the vertical direction. Sliding stability assessment formula of an interlocking caisson breakwater is proposed for regular, irregular, and multi-directional irregular wave conditions.

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 1. Stability of Amor Blocks (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 1 피복 블록의 안정성)

  • Kim Seung-Woo;Suh Kyung-Duck;Oh Young Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.188-201
    • /
    • 2005
  • This is the first part of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. This paper, Part 1, is restricted to stability of armor blocks, while Part 2 deals with sliding of caissons. Reliability design methods have been developed fur breakwater designs since the mid-1980s. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed. In the Level 1 method, partial safety factors are used, which are predetermined depending on the allowable probability of failure. In the Level 2 method, the probability of failure is evaluated with the reliability index, which is calculated using the means and standard deviations of the load and resistance. The load and resistance are assumed to distribute normally. In the Level 3 method, the cumulative quantity of failure (e.g. cumulative damage of armor blocks) during the lifetime of the breakwater is calculated without assumptions of normal distribution of load and resistance. Each method calculates different design parameters, but they can be expressed in terms of probability of failure so that tile difference can be compared among the different methods. In this study, we applied the reliability design methods to the stability of armor blocks of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the target probability of failure while that for the reinforced breakwater is much lower than the target value, indicating that the breakwaters before damage and after reinforcement were under- and over-designed, respectively. On the other hand, the results of the different reliability design methods were in fairly good agreement, confirming that there is not much difference among different methods.