• Title/Summary/Keyword: Cadmium(Cd)

Search Result 1,097, Processing Time 0.041 seconds

Heavy Metal Contents of Vegetables Available on the Markets in Seoul (서울에서 유통 중인 채소류의 중금속 함량에 관한 연구)

  • Choi, Chae-Man;Choi, Eun-Jung;Kim, Tae-Rang;Hong, Chae-Kyu;Kim, Jung-Hun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1873-1879
    • /
    • 2010
  • This study was conducted to estimate the heavy metal contents of vegetables available on the markets in Seoul area. Concentrations of mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), chrome (Cr), nickel (Ni), copper (Cu), and zinc (Zn) were measured in 300 samples using a mercury analyzer and inductively coupled plasma optical emission spectrometer (ICP-OES) after wet digestion. The average values of heavy metals in vegetables were as follows [mean (minimum~maximum), mg/kg]; Hg: 0.0005 (N.D~0.007), Pb: 0.011 (N.D~0.259), Cd: 0.012 (N.D~0.188), As: 0.002 (N.D~0.142), Cr: 0.100 (0.019~0.954), Ni: 0.093 (0.003~1.231), Cu: 1.098 (0.072~36.29), and Zn: 3.48 (0.485~21.31). The heavy metal contents of vegetables available on the markets in Seoul were almost the same as or lower than those reported in other studies. The weekly average intakes of mercury, lead and cadmium from vegetables take 0.44~7.71% of PTWI (Provisional Tolerable Weekly Intakes) that the FAO/WHO Joint Food Additive and Contaminants Committee sets for evaluation of food safety.

A Study on Heavy Metal Contamination and Risk Assessment of Seaweed and Seaweed Products (해조류와 해조류가공품의 중금속 오염실태 및 위해성평가)

  • Lee, Ji-Yeon;Lee, Myung-Jin;Jeong, Il-Hyung;Cho, Young-Sun;Sung, Jin-Hee;Baek, Eun-Jin;Lee, Eun-Bin;Kim, Hye-Jin;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.447-453
    • /
    • 2019
  • In this study, the contamination of 4 types of heavy metals (lead, cadmium, arsenic, and mercury) was monitored in 80 seaweeds and their processed products, and a food safety assessment was also carried out for these heavy metals. Lead, cadmium and arsenic were analyzed by ICP-OES and mercury was analyzed by mercury analyzer. The detection ranges of heavy metals were found as follows: Pb (N.D-0.802 mg/kg), Cd (N.D-0.759 mg/kg), As (0.134-17.296 mg/kg), and Hg (0.0005-0.0331 mg/kg). Pb and Hg showed no significant differences among seaweeds whereas Cd and As were significantly higher in the species hizikia fusiforme (P<0.05). Food safety assessment from seaweed intake was measured by PTWI (Provisional Tolerable Weekly Intake), PTMI (Provisional Tolerable Monthly Intake), and MADL (Maximum Allowable Daily Body Load) as set by JECFA (Joint FAO/WHO Expert Committee on Food Additives). Pb and Hg were 0.197%, 0.036% of PTWI respectively, while Cd was 1.877% of PTMI and As was 0.619% of MADL. Therefore, it was found that heavy metal levels of seaweed were low and was considered to be safe for consumption.

Monitoring of Seasonal Water Quality Variations and Environmental Contamination in the Sambo Mine Creek, Korea (삼보광산 하류 수계의 계절별 수질변화와 오염도 평가)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Ryu, Jong-Su;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.328-336
    • /
    • 2008
  • Metal mining district drainage is a well recognized source of environmental contamination. Oxidation of metal sulfides produces acidic and metal-rich waters that contaminate local surface water and ground water in mines, mine dumps, and tailing impoundments. This monitoring study was carried out to investigate the stream water quality and pollution as affected by the Sambo mine drainage in relation to the relative distance from the mine. It obvious that pH values of the mine drainage ranged from 5.8 to 6.9, while the average concentrations of the dissolved chemical constituents for EC, $SO_4^{2-}$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were $1.77\;dS\;m^{-1}$, 929, 14.6, 263.3, and 46.9 mg/L in mine drainage discharged from the main waste rock dumps (WRD), respectively. Furthermore, EC values and sulfate concentrations exceeded the critical toxicity levels in agricultural water for rice plant ($1.0\;dS\;m^{-1}$ for EC and 54.0 mg/L for $SO_4^{2-}$). Also, the average of dissolved cadmium concentrations ($0.016{\sim}0.021\;mg/L$) was higher than water quality standard (0.01 mg/L) for agricultural water in Korea, in addition to Zn, Fe and Mn were higher than trace metals maximum concentrations which recommended by FAO for irrigation water. The results indicate that mine drainage discharged from the Sambo mine affected stream water at least to distance of 1 km downstream of the mine water discharge point. EC values, $SO_4^{2-}$ and $Ca^{2+}$ concentrations in discharged water positively correlated with dissolved Cd, Zn, Al and Mn concentrations, while the pH values negatively correlated. In addition, EC values, $SO_4^{2-}$ and $Ca^{2+}$ concentrations were negatively correlated with pH values.

Uptake and Translocation of Heavy Metals to Rice Plant on Paddy Soils in "Top-Rice" Cultivation Areas (탑라이스 생산지역 논 토양 중 잔류중금속의 벼 흡수이행)

  • Park, Sang-Won;Yang, Ju-Seok;Ryu, Seung-Won;Kim, Dae-Yeon;Shin, Joung-Du;Kim, Won-Il;Choi, Ju-Hyeon;Kim, Sun-Lim;Saint, Andrew Flynn
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • Heavy metal residues in soil, rice straw, unhulled rice, rice hull, polished rice, and rice barn on the rice paddy in the "Top rice production complex which is non-contaminated area were evaluated. It was observed that the average concentrations of As, Cd, Cu, Pb, and Hg in the paddy soils were 1.235, 0.094, 4.412, 4.728 and 0.0279 mg/kg, respectively. There were no cultivation areas exceeded of the threshold for soil contamination designated by "The Soil Environment Conservation Law" in Korea. For the polished rice, there were no samples exceeded of a permissible level of heavy metal residues such as 0.051 mg/kg of As, 0.040 mg/kg of Cd, 0.345 mg/kg of Cu, 0.065 mg/kg of Pb and 0.0015 mg/kg of Hg. For the uptake and translocation of heavy metals to rice plant, a main part of heavy metal accumulation was rice straw, and then rice bran. Furthermore, it shown that accumulation of heavy metals in unhulled rice, rice hulls, brown rice, and polished rice was approximately similar as low. The slopes of translocation of heavy metals from soil to polished rice were following order as Cd, 0.4321 > Cu, 0.054 ${\fallingdotseq}$ Hg, 0.052 > As, 0.021 > Pb, 0.008. It was observed that potential ability of Cd uptake in rice plant and then its translocation into polished rice was very high. Concentrations of copper and mercury absorbed in the rice plant were moderate for translocating into the polished rice, while the arsenic and lead in the plant were scarcely translocated into the polished rice. The distribution of heavy metals absorbed and translocated into aboveground parts of rice plant was appeared that there were remained at 63.3-93.4% in rice straw, 6.6-36.9% in unhulled rice, 0.6-5.7% in rice hulls, 3.2-31.3% in brown rice, 0.8-4.6% in rice bran and 1.1-26.7% in polished rice. The accumulation ratio of Cd in the aboveground parts of rice plant was remained at 26.7-31.3% in brown and polished rice.

A Study on Heavy Metal Contents in Processed Foods and Their Safety Evaluations (가공식품 중 중금속 함량 및 안전성 평가)

  • Lee, Hyo-Jung;Shim, Jee-Youn;Oh, Hyun-Suk;Jang, Mi-Ran;Lee, Yoon-Ae;Lee, Ryun-Kyung;Kim, Min-A;Lee, Sang-Min;Cho, Tae-Yong;Kang, Ho-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This research was carried out as a survey on the contents of lead, cadmium, and arsenic in processed foods (milk, vegetable oil, and margarine) in Korea. The limits of quantification (LOQs) were Pb 0.3 ${\mu}g/kg$, Cd 0.15 ${\mu}g/kg$, and As 0.45 ${\mu}g/kg$ for milk and Pb 0.61 ${\mu}g/kg$, Cd 0.31 ${\mu}g/kg$, and As 0.91 ${\mu}g/kg$ for vegetable oil and margarine. The recoveries were 92.6-98.0% for Pb, 91.2-98.9% for Cd, and 97.9-104.7% for As. The average levels of Pb were 2.395 ${\mu}g/kg$ for milk, and 7.656 ${\mu}g/kg$ for vegetable oil. The average levels of Cd were 0.483 ${\mu}g/kg$ for milk, and 0.380 ${\mu}g/kg$ for vegetable oil, and levels of As were 0.781 ${\mu}g/kg$ for milk, and 1.241 ${\mu}g/kg$ for vegetable oil. The results of this study showed that Pb, Cd, and As contents in the whole samples were less than the maximum residual levels in the processed foods that were specified by the Codex standard.

Optimization of Coho Salmon Hydrolysate Using Japanese Squid Liver and Its Properties (일본산 오징어 간을 이용한 은연어 가수분해물 제조의 최적화와 가수분해물의 특성)

  • Lee, Su-Seon;Park, Joo-Dong;Konno, Kunihiko;Choi, Yeung Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1759-1766
    • /
    • 2013
  • In this study, the optimal conditions for salmon hydrolysate using squid liver and compositional properties of hydrolysate were investigated. The optimal conditions were $55^{\circ}C$, pH 5.5 and 0.66~0.67% (w/w) in the ratio of squid liver to acidic and thermal treated salmon muscle. The free amino acid of hydrolysate from the acidic treated salmon muscle was higher than that of hydrolysate from the thermal treated salmon muscle, while the total amino acid and mineral were high in the acidic treated salmon muscle. Furthermore, cadmium of hydrolysate from the thermal denatured salmon muscle was below 2 ppm, and has an acceptable level as potential ingredient. The distribution of peptide molecular weight was 40.0% for 1.0~9.5 kDa, 6.7% for 0.5 kDa, and 47.4% of others in hydrolysate from the thermal treated salmon muscle. Both hydrolysates did not show any toxicity against the HepG2 cell line for up to $200{\mu}g/mL$.

A Study on the recycling of sewage sludge cake using microwave drying (하수슬러지 케이크의 마이크로파 건조 후 재활용 연구)

  • Ha, Sang An;Yeom, Hae Kyong;You, Mi Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.77-84
    • /
    • 2006
  • The objective of this research is to evaluate various reclamation methods of sewage sludge cake after treating with microwave under optimum conditions. In this study the sewage sludge cakes used from S and N wastewater treatment plants in the P city. Microwave with an induced electricity heating way was employed for dehydration of sewage sludge cake. Microwave operation conditions is 2,450 MHz of frequency and the power with 1 to 4 kW. This sewage sludge cake had a moisture content of 70%. The moisture content of the sludge decreased notable up to 2%(wt) resulted in breaking of cell wall. When the treated sewage sludge cake mixed with soils could be applied to use midterm and last cover material soils. Moreover, the adsorption ability of heavy metals such as copper, lead, chromium and cadmium was greatly enhanced by treated sewage sludge cake. Within 30 minutes, 1ppm of copper, chromium and cadmium and 10ppm of lead with 1g of the treated sewage sludge cake in $100m{\ell}$ were below detection. It was possible to use the treated sewage sludge cake as an absorbent for absorption of toxic heavy metals. Results from this research indicated that using of microwave radiation was an effective method for treating sewage sludge cake economically and environmental. A point of view of reclamation, the treated sewage sludge cake appeared to be feasible with an adsorption of heavy metals in steady of using expensive yellow earth.

  • PDF

Heavy Metal Contents of Marketing Salts and Bay Salts by Heating (시판 소금의 중금속 함량과 천일염의 온도변화에 따른 중금속 함량)

  • 홍광택;이종영;장봉기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • In order to determine the content of heavy metal in common salts, 35 bay salt samples, 7 refined salt samples, 7 fine salt samples, 5 bake salt samples and 5 bamboo bake salt samples were collected from old market in major cities. Heating bay salt 35 samples, it made heating bay salt of $500^{\circ}C$, /TEX>(34 samples), heating bay salt of $1000^{\circ}C$(35 samples). These were analysed for contents of lead(Pb), cadmium(Cd), iron(Fe) and zinc(Zn) by atomic absorption spectrophotometer. The results were as follows : Mean content of lead in bay salts was $0.124{\pm}0.035ppm$ refined salt was $0.130{\pm}0.019ppm$, fine salt was $0.073{\pm}0.036ppm$ bake salt was $0.097{\pm}0.023ppm$, bamboo bake salt was $0.117{\pm}0.020ppm$, heating bay salt was $0.063{\pm} 0.021ppm$ in $500^{\circ}C$, heating bay salt was $0.063{\pm}0.039ppm$ in $1000^{\circ}C$. And bay salt refined salt bamboo bake salt were not significant one another. Mean content of cadmium in bay salts was $0.031{\pm}0.008ppm$ refined salt was $0.032{\pm}0.003ppm$, fine salt was $0.037{\pm}0.005ppm$, bake salt was $0.169{\pm}0.117ppm$ bamboo bake salt was $0.079{\pm}0.052ppm$, heating bay salt of $500^{\circ}C$ was $0.030{\pm}0.029ppm$ heating bay salt of $1000^{\circ}C$ was $0.017{\pm}0.013ppm$. And bay salt refined salt, fine salt were not significant one another. Mean content of iron in bay salts was $1.025{\pm}0, 634ppm$, refined salt was $0.359{\pm}0.163ppm$ fine salt was $0.267{\pm}0.068ppm$, bake salt was $2.929{\pm}1.963ppm$, bamboo bake salt was $5.378{\pm}3.676ppm$, heating bay salt of $500^{\circ}C$ was $0.847{\pm}0.315ppm$ heating bay salt of $1000^{\circ}C$ was $0.991{\pm}0.868ppm$. And bay salt refined salt, fine salt, bake salt, bamboo bake salt were significant one another(p<0, 01). Mean content of zinc in bay salts was $0.253{\pm}0.154ppm$, refined salt was $0.263{\pm}0.091ppm$ fine salt was $0.187{\pm}0.015ppm$, bake salt was $0.166{\pm}0.034ppm$, bamboo bake salt was $0.282{\pm}0.064ppm$, heating bay salt of $500^{\circ}C$ was $0.253{\pm}0.085ppm$, heating bay salt of $1000^{\circ} C$ was $0.242{\pm}0.179ppm$. And bay salt refined salt fine salt, bake salt, bamboo bake salt were not significant one another.

  • PDF

Distribution of Heavy Metal Contents in Medicinal Plants and Soils with Soil Texture (약용작물(藥用作物)과 그 재배토양(栽培土壤)의 토성별(土性別) 중금속함량(重金屬含量) 분포(分布))

  • Jung, Goo-Bok;Kim, Bok-Young;Kim, Kyu-Sik;Lee, Jong-Sik;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.158-164
    • /
    • 1996
  • This survey was conducted to investigate the distribution of heavy metal contents in medicinal plants and soils. Plant and soil samples were collected at 254 sites(Angelica gigas : 81, Astragalus membranceus : 38, Platycodn glandiflorum : 36, Paeonia albilora : 34, Codonopsis lanoceolata : 32, Ligusticum chuanxiong : 17, Bupleurum falcatum : 16, respectively) over the country, Soil texture, pH values and heavy metal content of soils and medicinal plants were evaluated as major factors. Soil texture classification showed that sandy loam, loam, loamy sand and silt loam were 46.1%, 26.0%, 19.3% and 8.6% of the total, respectively. The contents of O.M, Ex.Ca. Ex.Mg and EC value were higher in loamy(sandy loam, loam and silt loam)soils than in sandy(loamy sand)soils, but available $P_2O_5$ contents of loamy sand soils were higher than those of sandy loam, loam, and silt loam. The contents of Cd, Cu, Pb, Zn and Ni in soil were high in loamy soils, while Cr content was high in loamy silt soils. The contents of Cu and Cr in Angelica gigas were high in loamy soils, and those of Pb in Astragalus membranceus, Paeonia albiflora and Codonopsis lanoceolata were high in sandy loam soils. Correlation coefficients between heavy metal contents in medicinal plants and their soils with soil texture were positively correlated in sandy loam and loam at Cu, loam at Zn, sandy loam, loam and loamy sand at Cr, respectively. Correlation coefficients between pH value of the soils and contents of Cd, Zn and Ni in medicinal plants were negatively correlated, but those of Cd, Pb, Zn and Ni in soils were positively correlated.

  • PDF

The State of Marine Pollution in the Waters adjacent to Shipyards in Korea - 2. Assessment of the Pollution of Heavy Metals in Seawater around Major Shipyards in Summer 2010 (국내 조선소 주변해역의 해양오염 현황 - 2. 2010년 하계 대형조선소 주변 해수의 중금속오염 평가)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • In order to elucidate the current state of marine pollution of heavy metals around major shipyards in Korea, seawater samples were collected at eleven sampling stations and four control stations around 4 major shipyards located in the southeastern coast of Korea in summer 2010, and 6 kinds of metals such as copper(Cu), zinc(Zn), iron(Fe), cadmium(Cd), lead(Pb) and mercury(Hg) in seawater samples were analyzed. The analyses of heavy metals in seawater showed that the mean Cu concentrations in seawater around 4 major shipyards were in the range of $0.817{\sim}1.638{\mu}g/L$ which were lower than Korean environmental standards of $20{\mu}g/L$ for the protection of human health(PHH) and of $3{\mu}g/L$ for short-term protection of marine ecosystem(SPME) but higher than Cu concentration at control station by a factor of up to 2.75. The mean Zn concentrations were in the range of $0.228{\sim}0.567{\mu}g/L$ which were lower than Korean environmental standards of $100{\mu}g/L$ for PHH and $34{\mu}g/L$ for SPME but higher than Zn concentration at control station by a factor of up to 5.91. The mean Fe concentrations were in the range of $3.332{\sim}7.410{\mu}g/L$ which were higher than Fe concentration at control station by a factor of up to 6.75. The mean Cd concentrations were in the range of $0.013{\sim}0.028{\mu}g/L$ which were lower than Korean environmental standards of $10{\mu}g/L$ for PHH and $19{\mu}g/L$ for SPME but higher than Cd concentration at control station by a factor of up to 2.33. The mean Pb concentrations were in the range of $0.007{\sim}0.126{\mu}g/L$ which were lower than Korean environmental standards of $50{\mu}g/L$ for PHH and $7.6{\mu}g/L$ for SPME. The mean Hg concentrations were in the range of $0.002{\sim}0.004{\mu}g/L$ which were lower than Korean environmental standards of $0.5{\mu}g/L$ for PHH and $1.8{\mu}g/L$ for SPME. Although the concentrations of metals such as Cu, Zn and Fe which were used in shipbuilding works were lower than Korean environmental standards for PHH and SPME, the fact that the concentrations of Cu, Zn and Fe at sampling stations around major shipyards were higher than those at control stations implies that the works in shipyards had some effects on marine water quality around shipyards. Therefore, marine environment management such as the prevention and control of the discharge of various pollutants from shipyards is required on national level.