• Title/Summary/Keyword: Cadastral segmentation

Search Result 3, Processing Time 0.016 seconds

Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images (드론 항공영상을 이용한 딥러닝 기반 앙상블 토지 피복 분할 알고리즘 개발)

  • Hae-Gwang Park;Seung-Ki Baek;Seung Hyun Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings,roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.

AN IMAGE SEGMENTATION LEVEL SET METHOD FOR BUILDING DETECTION

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.610-614
    • /
    • 2006
  • In this paper the advanced method of geodesic active contours was developed for the task of building detection from aerial and satellite images. Automatic extraction of man-made structures including buildings, building blocks or roads from remote sensing data is useful for land use mapping, scene understanding, robotic navigation, image retrieval, surveillance, emergency management procedures, cadastral etc. A level set method based on a region-driven segmentation model was implemented with which building boundaries were detected, through this curve propagation technique. The essence of this approach is to optimize the position and the geometric form of the curve by measuring information along that curve, and within the regions that compose the image partition. To this end, one can consider uniform intensities inside objects and the background. Thus, given an initial position of the curve, one can determine global, region-driven functions and provide a statistical description of the inside and outside object area. The calculus of variations and a gradient descent method was used to optimize the variational functional by an iterative steady state process. Experimental results demonstrate the potential of the proposed processing scheme.

  • PDF

Assessment of the FC-DenseNet for Crop Cultivation Area Extraction by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 작물재배지역 추정을 위한 FC-DenseNet의 활용성 평가)

  • Seong, Seon-kyeong;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.823-833
    • /
    • 2020
  • In order to stably produce crops, there is an increasing demand for effective crop monitoring techniques in domestic agricultural areas. In this manuscript, a cultivation area extraction method by using deep learning model is developed, and then, applied to satellite imagery. Training dataset for crop cultivation areas were generated using RapidEye satellite images that include blue, green, red, red-edge, and NIR bands useful for vegetation and environmental analysis, and using this, we tried to estimate the crop cultivation area of onion and garlic by deep learning model. In order to training the model, atmospheric-corrected RapidEye satellite images were used, and then, a deep learning model using FC-DenseNet, which is one of the representative deep learning models for semantic segmentation, was created. The final crop cultivation area was determined as object-based data through combination with cadastral maps. As a result of the experiment, it was confirmed that the FC-DenseNet model learned using atmospheric-corrected training data can effectively detect crop cultivation areas.