• Title/Summary/Keyword: Cache memory

Search Result 412, Processing Time 0.017 seconds

A Bit-Map Trie for the High-Speed Longest Prefix Search of IP Addresses (고속의 최장 IP 주소 프리픽스 검색을 위한 비트-맵 트라이)

  • 오승현;안종석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.2
    • /
    • pp.282-292
    • /
    • 2003
  • This paper proposes an efficient data structure for forwarding IPv4 and IPv6 packets at the gigabit speed in backbone routers. The LPM(Longest Prefix Matching) search becomes a bottleneck of routers' performance since the LPM complexity grows in proportion to the forwarding table size and the address length. To speed up the forwarding process, this paper introduces a data structure named BMT(Bit-Map Tie) to minimize the frequent main memory accesses. All the necessary search computations in BMT are done over a small index table stored at cache. To build the small index table from the tie representation of the forwarding table, BMT represents a link pointer to the child node and a node pointer to the corresponding entry in the forwarding table with one bit respectively. To improve the poor performance of the conventional tries when their height becomes higher due to the increase of the address length, BMT adopts a binary search algorithm for determining the appropriate level of tries to start. The simulation experiments show that BMT compacts the IPv4 backbone routers' forwarding table into a small one less than 512-kbyte and achieves the average speed of 250ns/packet on Pentium II processors, which is almost the same performance as the fastest conventional lookup algorithms.

Efficient DRAM Buffer Access Scheduling Techniques for SSD Storage System (SSD 스토리지 시스템을 위한 효율적인 DRAM 버퍼 액세스 스케줄링 기법)

  • Park, Jun-Su;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.48-56
    • /
    • 2011
  • Recently, new storage device SSD(Solid State Disk) based on NAND flash memory is gradually replacing HDD(Hard Disk Drive) in mobile device and thus a variety of research efforts are going on to find the cost-effective ways of performance improvement. By increasing the NAND flash channels in order to enhance the bandwidth through parallel processing, DRAM buffer which acts as a buffer cache between host(PC) and NAND flash has become the bottleneck point. To resolve this problem, this paper proposes an efficient low-cost scheme to increase SSD performance by improving DRAM buffer bandwidth through scheduling techniques which utilize DRAM multi-banks. When both host and NAND flash multi-channels request access to DRAM buffer concurrently, the proposed technique checks their destination and then schedules appropriately considering properties of DRAMs. It can reduce overheads of bank active time and row latency significantly and thus optimizes DRAM buffer bandwidth utilization. The result reveals that the proposed technique improves the SSD performance by 47.4% in read and 47.7% in write operation respectively compared to conventional methods with negligible changes and increases in the hardware.