• Title/Summary/Keyword: Cac1

Search Result 587, Processing Time 0.033 seconds

Development and Validation of an Analytical Method for Determination of Fungicide Benzovindiflupyr in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 벤조빈디플루피르의 잔류시험법 개발 및 검증)

  • Lim, Seung-Hee;Do, Jung-Ah;Park, Shin-Min;Pak, Won-Min;Yoon, Ji Hye;Kim, Ji Young;Chang, Moon-Ik
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.298-305
    • /
    • 2017
  • Benzovindiflupyr is a new pyrazole carboxamide fungicide that inhibits succinate dehydrogenase of mitochondrial respiratory chain. This study was carried out to develop an analytical method for the determination of benzovindiflupyr residues in agricultural commodities using LC-MS/MS. The benzovindiflupyr residues in samples were extracted by using acetonitrile, partitioned with dichloromethane, and then purified with silica solid phase extraction (SPE) cartridge. Correlation coefficient ($r^2$) of benzovindiflupyr standard solution was 0.99 over the calibration ranges ($0.001{\sim}0.5{\mu}g/mL$). Recovery tests were conducted on 5 representative agricultural commodities (mandarin, green pepper, potato, soybean, and hulled rice) to validate the analytical method. The recoveries ranged from 79.3% to 110.0% and then relative standard deviation (RSD) was less than 9.1%. Also the limit of detection (LOD) and limit of quantification (LOQ) were 0.0005 and 0.005 mg/kg, respectively. The recoveries of interlaboratory validation ranged from 83.4% to 117.3% and the coefficient of variation (CV) was 9.0%. All results were followed with Codex guideline (CAC/GL 40) and Ministry of Food and Safety guideline (MFDS, 2016). The proposed new analytical method proved to be accurate, effective, and sensitive for benzovindiflupyr determination and would be used as an official analytical method.

Development of a Simultaneous Analytical Method for Determination of Trinexapac-ethyl and Trinexapac in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 식물생장조절제 Trinexapac-ethyl과 대사산물 Trinexapac의 동시분석법 개발)

  • Jang, Jin;Kim, Heejung;Ko, Ah-Young;Lee, Eun-Hyang;Ju, Yunji;Chang, Moon-Ik;Rhee, Gyu-Seek;Suh, Saejung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.318-327
    • /
    • 2015
  • BACKGROUND: Trinexapac-ethyl is a plant growth regulator (PGR) that inhibits the biosynthesis of plant growth hormone (gibberellin). It is used for the prevention of lodging, increasing yields of cereals, and reducing mowing of turf. The experiment was conducted to establish a determination method for trinexapac-ethyl and its metabolites trinexapac in agricultural products using LC-MS/MS.METHODS AND RESULTS: Trinexapac-ethyl and trinexapac were extracted from agricultural products with methanol/ distilled water and the extract was partitioned with dichloromethane and then detected by LC-MS/MS. Limit of detection(LOD) was 0.003 mg/kg and limit of quantification(LOQ) was 0.01 mg/kg, respectively. Matrix matched calibration curves were linear over the calibration ranges (0.01-1.0 mg/L) for all the analytes into blank extract withr2> 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, 50LOQ,n=5). Recoveries of trinexapacethyl and trinexapac were within the range of 73.6-106.9%, 72.7-99.2%, respectively. The relative standard deviations (RSDs) were less than 9.0%. All values were consistent with the criteria ranges requested in the CODEX guideline(CAC/GL 40, 2003).CONCLUSION: The proposed analytical method was accurate, effective and sensitive for trinexapac-ethyl and trinexapac determination and it can be used to as an official method in Korea.

Development and Validation of an Analytical Method for Quinoxyfen in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 살균제 Quinoxyfen의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2019
  • An analytical method was developed for the determination of quinoxyfen in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile and water was removed by liquid-liquid partitioning with $MgSO_4$ (anhydrous magnesium sulfate) and sodium acetate. Dispersive solid-phase extraction (d-SPE) cleanup was carried out using $MgSO_4$, PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed by using LC-MS/MS in positive mode with MRM (multiple reaction monitoring). The matrix-matched calibration curves were constructed using six levels ($0.001-0.25{\mu}g/mL$) and the coefficient of determination ($R^2$) was above 0.99. Recovery results at three concentrations (LOQ, 10 LOQ, and 50 LOQ, n=5) were in the range of 73.5-86.7% with RSDs (relative standard deviations) of less than 8.9%. For inter-laboratory validation, the average recovery was 77.2-95.4% and the CV (coefficient of variation) was below 14.5%. All results were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for quinoxyfen determination in agricultural commodities. This study could be useful for the safe management of quinoxyfen residues in agricultural products.

Experimental and analytical study of squat walls with alternative detailing

  • Leonardo M. Massone;Cristhofer N. Letelier;Cristobal F. Soto;Felipe A. Yanez;Fabian R. Rojas
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2024
  • In squat reinforced concrete walls, the displacement capacity for lateral deformation is low and the ability to resist the axial load can quickly be lost, generating collapse. This work consists of testing two squat reinforced concrete walls. One of the specimens is built with conventional detailing of reinforced concrete walls, while the second specimen is built applying an alternative design, including stirrups along the diagonal of the wall to improve its ductility. This solution differs from the detailing of beams or coupling elements that suggest building elements equivalent to columns located diagonally in the element. The dimensions of both specimens correspond to a wall with a low aspect ratio (1:1), where the height and length of the specimen are 1.4 m, with a thickness of 120 mm. The alternative wall included stirrups placed diagonally covering approximately 25% of the diagonal strut of the wall with alternative detailing. The walls were tested under a constant axial load of 0.1f'cAg and a cyclic lateral displacement was applied in the upper part of the wall. The results indicate that the lateral strength is almost identical between both specimens. On the other hand, the lateral displacement capacity increased by 25% with the alternative detailing, but it was also able to maintain the 3 complete hysteretic cycles up to a drift of 2.5%, reaching longitudinal reinforcement fracture, while the base specimen only reached the first cycle of 2% with rapid degradation due to failure of the diagonal compression strut. The alternative design also allows 46% more energy dissipation than the conventional design. A model was used to capture the global response, correctly representing the observed behavior. A parametric study with the model, varying the reinforcement amount and aspect ratio, was performed, indicating that the effectiveness of the alternative detailing can double de drift capacity for the case with a low aspect ratio (1.1) and a large longitudinal steel amount (1% in the web, 5% in the boundary), which decreases with lower amounts of longitudinal reinforcement and with the increment of aspect ratio, indicating that the alternative detailing approach is reasonable for walls with an aspect ratio up to 2, especially if the amount of longitudinal reinforcement is high.

Development of an Analytical Method for Fluxapyroxad Determination in Agricultural Commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 Fluxapyroxad 잔류분석법 개발)

  • Kwon, Ji-Eun;Kim, HeeJung;Do, Jung-Ah;Park, Hyejin;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Fluxapyroxad is classified as carboxamide fungicide that inhibits succinate dehydrogenase in complex II of mitochondrial respiratory chain, which results in inhibition of mycelial growth within the fungus target species. This study was carried out to assure the safety of fluxapyroxad residues in agricultural products by developing an official analytical method. A new, reliable analytical method was developed and validated using High Performance liquid Chromatograph-UV/visible detector (HPLC-UVD) for the determination of fluxapyroxad residues. The fluxapyroxad residues in samples were extracted with acetonitrile, partitioned with dichloromethane, and then purified with silica solid phase extraction (SPE) cartridge. Correlation coefficient($R^2$) of fluxapyroxad standard solution was 0.9999. The method was validated using apple, pear, peanut, pepper, hulled rice, potato, and soybean spiked with fluxapyroxad at 0.05 and 0.5 mg/kg. Average recoveries were 80.6~114.0% with relative standard deviation less than 10%, and limit of detection (LOD) and limit of quantification (LOQ) were 0.01 and 0.05 mg/kg, respectively. All validation parameters were followed with Codex guideline (CAC/GL 40). LC-MS (Liquid Chromatograph-Mass Spectrometer) was also applied to confirm the analytical method. Base on these results, this method was found to be appropriate fluxapyroxad residue determination and can be used as the official method of analysis.

Development of analytical method for determination of spinetoram residues in livestock using LC-MS/MS (LC-MS/MS를 이용한 축산물 중 Spinetoram 공정시험법 개발 및 검증)

  • Ko, Ah-Young;Kim, Heejung;Do, Jung Ah;Jang, Jin;Lee, Eun Hyang;Ju, Yun Ji;Kim, Ji Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Analytical Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.94-103
    • /
    • 2016
  • An analytical method was developed to determine the amount of spinetoram (spinetoram J and spinetoram L) in livestock samples. The spinetoram was extracted with acetonitrile and purified through a primary secondary amine (PSA) sorbent. The spinetoram residues were then quantified and confirmed using a liquid chromatography–tandem mass spectrometer (LC-MS/MS) in the positive ion mode using multiple reactions monitoring (MRM). Matrix-matched calibration curves were linear over the calibration ranges (0.005-0.5 mg/kg) into a blank extract with r2 > 0.994. The limits of detection and quantification were 0.002 and 0.01 mg/kg, respectively. The recovery results of spinetram ranged between 81.9-106.4% at different concentration levels (LOQ, 10LOQ, 50LOQ, n=5) with relative standard deviations (RSDs) less than 10%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL40, 2003). An interlaboratory study was conducted to validate the method. The proposed analytical method proved to be accurate, effective, and sensitive for spinetoram determination. The method will be used as an official analytical method in Korea.

Development and validation of analytical methods for pyrifluquinazon residues determination on agricultural commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 pyrifluquinazon 잔류시험법 개발 및 검증)

  • Do, Jung-Ah;Kwon, Ji-Eun;Kim, Mi-Ra;Lee, Eun-Mi;Kuk, Ju-Hee;Cho, Yoon-Jae;Chang, Moon-Ik;Kwon, Kisung;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.174-181
    • /
    • 2013
  • Pyrifluquinazon is classified with a quinazoline insecticide that regulates food intake by controling the feeding behavior acting on the endocrine or nervous system of pests such as aphids and white fly. To keep safety on pyrifluquinazon residues in agricultural commodities a simple, accurate and rapid analytical method was developed and validated using high performance liquid chromatograph (HPLC-UVD). The pyrifluquinazon residues acidified with 1% formic acid in samples were extracted with acetonitrile and partitioned with hexane subsequently to dichloromethane then purified with silica solid phase extraction (SPE) cartridge. The purified samples were detected using HPLC-UVD. The method was validated using apple and pear spiked with pyrifluquinazon at 0.02, 0.05 and 0.1 mg/kg and hulled rice, pepper, soybean at 0.05 and 0.1 mg/kg. Average recoveries were 70.5~107.9% with relative standard deviation less than 10%. The result of recoveries and overall coefficient of variation of a laboratory results in Gwangju regional FDA and Daejeon regional FDA was followed with Codex guideline (CODEX CAC/GL 40). This method is appropriated at pyrifluquinazon residues determination and will be used as official method of analysis.

Study Analysis of Isocycloseram and Its Metabolites in Agricultural Food Commodities

  • Ji Young Kim;Hyochin Kim;Su Jung Lee;Suji Lim;Gui Hyun Jang;Guiim Moon;Jung Mi Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.71-81
    • /
    • 2023
  • An accurate and easy-to-use analytical method for determining isocycloseram and its metabolites (SYN549431 and SYN548569) residue is necessary in various food matrixes. Additionally, this method should satisfy domestic and international guidelines (Ministry of Food and Drug Safety and Codex Alimentarius Commission CAC/GL 40). Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to determine the isocycloseram and its metabolites residue in foods. To determine the residue and its metabolites, a sample was extracted with 20 mL of 0.1% formic acid in acetonitrile, 4 g magnesium sulfate anhydrous and 1 g sodium chloride and centrifuged (4,700 G, 10 min, 4℃). To remove the interferences and moisture, d-SPE cartridge was performed before LC-MS/MS analysis with C18 column. To verify the method, a total of five agricultural commodities (hulled rice, potato, soybean, mandarin, and red pepper) were used as a representative group. The matrix-matched calibration curves were confirmed with coefficients of determination (R2) ≥ 0.99 at a calibration range of 0.001-0.05 mg/kg. The limits of detection and quantification were 0.003 and 0.01 mg/kg, respectively. Mean average recoveries were 71.5-109.8% and precision was less than 10% for all five samples. In addition, inter-laboratory validation testing revealed that average recovery was 75.4-107.0% and the coefficient of variation (CV) was below 19.4%. The method is suitable for MFDS, CODEX, and EU guideline for residue analysis. Thus, this method can be useful for determining the residue in various food matrixes in routine analysis.

Development of LC-MS/MS Quantitation Method for Ethoxyquin in Fishery Products (수산물 중 에톡시퀸의 LC-MS/MS 정량분석법 개발)

  • Shin, Dasom;Chae, Young-Sik;Kang, Hui-Seung;Lee, Soo-Bin;Cho, Yoon-Jae;Cheon, So-Young;Jeong, Jiyoon;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.432-438
    • /
    • 2016
  • Ethoxyquin (EQ, 1,2-dihydro-6-ethoxy-2,2,4-trimethyl-quinoline) is quinoline-based antioxidant used in the animal feed and food industry to protect the raw materials and final products against oxidation. In recent years the use of synthetic antioxidants in fishmeal ingredients carry-over to farmed fish fillets has received increasing attention in food safety. This study was conducted to develop an analytical method to determine EQ in aquatic products. The analytes were confirmed and quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the positive ion mode using multiple reaction monitoring (MRM). The sample was extracted with 1 N HCl (in case of flatfish extracted with 1 N HCl containing 10% acetonitrile). Then, solid phase extraction (SPE) was used for the cleanup. Standard calibration curves presented linearity with the correlation coefficient ($r^2$) > 0.99, analyzed at 0.005-0.2 mg/kg concentration. The developed method was validated according to the Codex Alimentarius Commission (CAC) guideline. The limits of quantitation for EQ were 0.01 mg/kg. Average recoveries ranged from 81.3% to 107%. The repeatability of measurements, expressed as the coefficient of variation (CV, %), was below 10%. The analytical method was characterized with high accuracy and acceptable sensitivity to meet CODEX guideline requirements and would be applicable to analyze the EQ residue in aquatic products.

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.