• Title/Summary/Keyword: Cable-supported bridges

Search Result 84, Processing Time 0.026 seconds

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

A CASE STUDY OF CONSTRUCTION ENGINEERING FOR CABLE SUPPORTED BRIDGE BY COLLABORATIVE SYSTEM

  • Jung-Min Nam;Sung-Ho Kim;Jae-Hong Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.586-590
    • /
    • 2011
  • This paper presents the case study of the CE by collaborative system and proposes a model of the CM group for the cable supported bridge. The cable supported bridges have a large project scale and need a high level of construction method. Therefore an advanced construction management system is required for successful completion of project. The construction management (CM) group which control design management, construction plan, subcontract, technical support and R&D is organized for the cable supported bridge project. The CM group established a collaborative system with construction site and drew an effective management of cost, process, quality, safety for each project. Furthermore, the CM group established the procedure of construction management based on the construction engineering (CE) items and performed the project management on the construction phase. Efficiency of cost reduction and site control is maximized by using a collaborative system.

  • PDF

Study on the Emergency Assessment about Seismic Safety of Cable-supported Bridges using the Comparison of Displacement due to Earthquake with Disaster Management Criteria (변위 비교를 통한 케이블지지교량의 긴급 지진 안전성 평가 방법의 고찰)

  • Park, Sung-Woo;Lee, Seung Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.114-122
    • /
    • 2018
  • This study presents the emergency assessment method about seismic safety of cable-supported bridges using seismic acceleration sensors installed on the primary structural elements of them. The structural models of bridges are updated iteratively to make their dynamic characteristics to be similar to those of real bridges based on the comparison of their natural frequencies with those of real bridges estimated from acceleration data measured at ordinary times by the seismic acceleration sensor. The displacement at the location of each seismic acceleration sensor is derived by seismic analysis using design earthquake, and the peak value of them is determined as the disaster management criteria in advance. The displacement time history is calculated by the double integration of the acceleration time history which is recorded at each seismic acceleration sensor and filtered by high cut(low pass) and low cut(high pass) filters. Finally, the seismic safety is evaluated by the comparison of the peak value in calculated displacement time history with the disaster management criteria determined in advance. The applicability of proposed methodology is verified by performing the seismic safety assessment of 12 cable-supported bridges using the acceleration data recorded during Gyeongju earthquake.

A Study on Determination of Cable-Tension Using Unstrained-Length-Modification Method (초기길이 수정법(ULMM)을 이용한 케이블 장력 결정에 관한 연구)

  • Kong, Min Sik;An, Chan Hyeog;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • This study presents the ULMM(unstrained-length-modification method) to determine the cable tension consistent with target tension after arrangement of cable-members by controlling the unstrained length of cables. This method used to be shown to determine the exact unstrained length for cable-supported bridge with elastic catenary cable. The some verification examples show to determine the unstrained length that satisfies the target tension and to obtain the satisfactory result for cable-supported bridge. Accordingly this modification method of the unstrained length in this study is used to introduce the satisfactory target tension.

Application of Vision-based Measurement System for Estimation of Dynamic Characteristics on Hanger Cables (행어케이블의 동특성 추정을 위한 영상계측시스템 적용)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.1-10
    • /
    • 2012
  • Along with the development of coasts, islands and mountains, the demand of long-span bridges increases which, in turn, brings forth the construction of cable-supported bridges like suspension and cable-stayed bridges. There are various types of statically indeterminate structures widely applied that supported the main girder with stay cables, main cables, hanger cables with aesthetic structural appearance. As to the cable-supported bridges, the health monitoring of a bridge can be identified by measuring tension force on cable repeatedly. The tension force on cable is measured either by direct measurement of stress of cable using load cell or hydraulic jack, or by vibration method estimating tension force using cable shape and measured dynamic characteristics. In this study, a method to estimate dynamic characteristics of hanger cables by using a digital image processing is suggested. Digital images are acquired by a portable digital camcorder, which is the sensor to remotely measure dynamic responses considering convenient and economical aspects for use. A digital image correlation(DIC) technique is applied for digital image processing, and an image transform function(ITF) to correct the geometric distortion induced from the deformed images is used to estimate subpixel. And, the correction of motion of vision-based measurement system using a fixed object in an image without installing additional sensor can be enhanced the resolution of dynamic responses and modal frequencies of hanger cables.

Displacement Evaluation of Cable Supported Bridges Using Inclinometers (경사계를 이용한 케이블교량의 변위 산정)

  • Kong, Min Joon;Yun, Jung Hyun;Kang, Seong In;Gil, Heungbae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.297-308
    • /
    • 2023
  • Displacement of structures is the most important parameter for safety and performance assessment and is measured to use for diagnosis and maintenance of bridges. Usually LVDT, Laser and GNSS are used for displacement measurement but these measurement instruments have problems in terms of field condition and cost. Therefore, in this study, displacements were evaluated using rotational angle measured by inclinometers and the proposed algorithm was experimentally verified. As the result, vertical displacements of cable supported bridges with traffic and temperature load were properly evaluated through the proposed algorithm. Therefore it is considered that the proposed algorithm can be used for displacement measurement by vehicle load test and long term displacement monitoring.

Simulation of vibrations of Ting Kau Bridge due to vehicular loading from measurements

  • Au, F.T.K.;Lou, P.;Li, J.;Jiang, R.J.;Zhang, J.;Leung, C.C.Y.;Lee, P.K.K.;Lee, J.H.;Wong, K.Y.;Chan, H.Y.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.471-488
    • /
    • 2011
  • The Ting Kau Bridge in Hong Kong is a cable-stayed bridge comprising two main spans and two side spans. The bridge deck is supported by three towers, an end pier and an abutment. Each of the three towers consists of a single reinforced concrete mast strengthened by transverse cables and struts. The bridge deck is supported by four inclined planes of cables emanating from anchorages at the tower tops. In view of the heavy traffic on the bridge, and threats from typhoons and earthquakes originated in areas nearby, the dynamic behaviour of long-span cable-supported bridges in the region is always an important consideration in their design. Baseline finite element models of various levels of sophistication have been built not only to match the bridge geometry and cable forces specified on the as-constructed drawings but also to be calibrated using the vibration measurement data captured by the Wind and Structural Health Monitoring System. This paper further describes the analysis of axle loading data, as well as the generation of random axle loads and simulation of vibrations of the bridge using the finite element models. Various factors affecting the vehicular loading on the bridge will also be examined.

Seismic Fragility Evaluation of Cable Supported Bridges Based on Probability Distribution Using Safety Factors of Structural Members (안전율 확률분포에 근거한 케이블지지교량 주요부재의 내진성능 취약도 평가)

  • Park, Jin-Woo;Kim, Chang-Sung;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.37-44
    • /
    • 2019
  • The purpose of this study is to rationally determine the priority of seismic reinforcement of main(key) members of bridges. Cable Supported bridge was selected as the evaluation target and the reliability based on the probability distribution was used to evaluate the seismic fragility of the key members as a quantitative indicator. The safety factor, which is a random variable, is considered an artificial (fixed load and live load) load and a natural (earthquake, wind, temperature, etc.) load. The seismic load is applied as a possible earthquake during the lifetime of the bridge. From analyzing the fragility of each key member based on the seismic reliability, it can be concluded that the shoe (23.8%) was the most fragile, where the other members are ranked as place concrete (20.5%), pier (18.9%), foundation (17.3%) and cable (5.0%) respectively.

Evaluation of Thermal Movements of a Cable-Stayed Bridge Using Temperatures and Displacements Data (온도와 변위 데이터를 이용한 사장교의 온도신축거동 평가)

  • Park, Jong Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.779-789
    • /
    • 2015
  • Because cable-supported bridges have long spans and large members, their movements and geometrical changes by temperatures tend to be bigger than those of small or medium-sized bridges. Therefore, it is important for maintenance engineers to monitor and assess the effect of temperature on the cable-supported bridges. To evaluate how much the superstructure expands or contracts when subjected to changes in temperature is the first step for the maintenance. Thermal movements of a cable-stayed bridge in service are evaluated by using long-term temperatures and displacements data. Displacements data are obtained from extensometers and newly installed GNSS (Global Navigation Satellite System) receivers on the bridge. Based on the statistical data such as air temperatures, each sensor's temperatures, average temperatures and effective temperatures, correlation analysis between temperatures and displacements has been performed. Average temperatures or effective temperatures are most suitable for the evaluation of thermal movements. From linear regression analysis between effective temperatures and displacements, the variation rate's of displacement to temperature have been calculated. From additional regression analysis between expansion length's and variation rate's of displacement to temperature, the thermal expansion coefficient and neutral point have been estimated. Comparing these parameters with theoretical and analytical results, a practical procedure for evaluating the real thermal behaviors of the cable-supported bridges is proposed.