• 제목/요약/키워드: Cable-Stayed

검색결과 617건 처리시간 0.023초

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.

BIM 기반 사장교의 개념설계 및 예가분석 시스템 개발 (BIM System Development for Conceptual Design and Pre-Feasibility Study of Cable-Stayed Bridge)

  • 천경식;박원태
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.7204-7210
    • /
    • 2015
  • 본 연구는 2주탑 3경간 사장교의 사업기획 단계에서 3차원 모델정보에 기반하여 신속한 개략 공사비 및 물량 산정을 지원하는 시스템을 개발하였다. 우선, 기 설계된 사장교 설계정보(구조계산서, 도면, 수량)를 분석하여 설계변수를 도출하였다. 도출된 설계변수를 기반으로 매개변수적으로 사장교를 3차원 모델링하는 BIM Wizard를 개발하였다. BIM Wizard를 이용해 작성된 3차원 모델로부터 사장교의 주요 재료에 대한 수량을 직접 산출하며, 케이블 교량에 대한 단가 D/B와 산출된 수량을 연계하여 개략공사비를 산정할 수 있다. 결과적으로, 사업 초기단계에서 m당 혹은 $m^2$당 실적 평균공사비를 산출하는 재래적인 방식보다 더 구체화된 공사비를 산출할 수 있는 시스템을 구축하였다. 이로써, 우리는 사장교에 대해 입찰단계에서 가능한 신속하게 다양한 대안을 검토할 수 있을 것이다.

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Stability analysis of steel cable-stayed bridges

  • Tang, Chia-Chih;Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.35-48
    • /
    • 2001
  • The objective of this study is to investigate the stability behavior of steel cable-stayed bridges by comparing the buckling loads obtained by means of finite element methods with eigen-solver. In recent days, cable-stayed bridges dramatically attract engineers' attention due to their structural characteristics and aesthetics. They require a number of design parameters and present a high degree of static indetermination, especially for long span bridges. Cable-stayed bridges exhibit several nonlinear behaviors concurrently under normal design loads due to the individual nonlinearity of substructures such as the pylons, stay cables, and bridge deck, and their interactions. The geometric nonlinearities arise mainly from large displacements of cables. Strong axial and lateral forces acting on the bridge deck and pylons cause structural nonlinear behaviors. The interaction is among the substructures. In this paper, a typical three-span steel cable-stayed bridge with a variety of design parameters has been investigated. The numerical results indicate that the design parameters such as the ratio of $L_1/L$ and $I_p/I_b$ are important for the structural behavior, where $L_1$ is the main span length, L is the total span length of the bridge, $I_p$ is the moment of inertia of the pylon, and $I_b$ is the moment of inertia of the bridge deck. When the ratio $I_p/I_b$ increases, the critical load decreases due to the lack of interaction among substructures. Cable arrangements and the height of pylon are another important factors for this type of bridge in buckling analysis. According to numerical results, the bridges supported by a pylon with harp-type cable arrangement have higher critical loads than the bridges supported by a pylon with fan-type cable arrangement. On contrary, the shape of the pylon does not significantly affect the critical load of this type of bridge. All numerical results have been non-dimensionalized and presented in both tabular and graphical forms.

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • 제16권3호
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.

시공성 및 경제성을 고려한 사장교 부반력 제어 연구 : 베트남 밤콩 사장교 사례 (A Study on Controlling the Negative Reaction of Cable Stayed Bridge Considering Constructability and Economy : Vam Cong Cable Stayed Bridge in Vietnam)

  • 이용진;노병철;김창교;배상운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.87-95
    • /
    • 2014
  • 사장교는 다수의 케이블에 의해 지지되어 복잡한 거동을 하는 구조체이며, 측경간 케이블에 의해 단부교각에서 부반력이 발생한다. 이를 해결하기 위해 적절한 측경간비를 설정해야 하고 앵커교각의 부반력 대책을 강구해야 한다. 부반력 제어 대책으로는 중간교각, 카운터 웨이트 등을 설치하는 방안이 있으며 이에 따라 사장교의 구조계가 결정된다. 밤콩교량은 타당성 검토 단계에서 5경간 사장교로 계획되었다. 하지만 시공성 및 경제성 등의 문제로 실시설계 단계에서 3경간 사장교로 변경되었다. 시공성을 확보하기 위하여 중간교각을 배제하였고, 이에 따른 부반력을 제어하기 위해 측경간비를 증가시켰다. 그 결과, 원안 설계에 비하여 시공성, 구조적 안전성, 효율성을 확보할 수 있었다.

서해대교 시공 공법 소개 (Construction Method of Seohae Grand Bridge)

  • 윤태섭
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2000년도 학술대회지
    • /
    • pp.255-266
    • /
    • 2000
  • Since 1993, Seohae grand bridge has been continued construction for 7 years and will be completed late this year. The bridge is a part of west sea castal highway and consists of 3 types of bridge including precast segmental method, free cantilever method and cable stayed bridge. A cable stayed bridge is the core of this bridge and it consists of 5 span, symetrical cable-stayed bridge with a total length of 990 m. The main span between two H-shaped pylons extending approximately 180 M above massive foundation of a cable stayed bridge is 470 m long and an approach span of that is 260 m long respectively. The circular cofferdam with 16 ea of 25 m diameter flat type sheet pile had been applied to construct foundation. The slipform method had been applied for forming of con'c of two H-shaped pylons with 3 cross beams respectively which is varied horizontally and vertically. The deck has been erected with balanced cantilever method using movable derrick crane. The stay cables is a bundle of parallel individually protected, 7 wire high tensile strands. The strands is hot deep galvanized and sheathed with a tight high density polyethylene coating. A petroleum wax fills all the inter-wire voids. The bundle of strands to prevent from deterioration due to the ambient problem covered with high density polyethylene pipe. The Isotension method has been applied for the stressing of cable strands to ensure uniformity of force in all the strands of a syay and such works has been performed on the stay specially provided in the pylon.

  • PDF

Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.513-534
    • /
    • 2008
  • This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into time-domain values using the rational function approximation and the multidimensional autoregressive process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed using the modal analysis method. The local vibration of stay cables is calculated using a model in which an inclined cable is subjected to time-varying displacement at one support under global vibration. This model can consider both forced vibration and parametric vibration. The response characteristics of the local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge. The results of the numerical analysis show a significant difference between the combined parametric and forced vibrations and the forced vibration.