• Title/Summary/Keyword: Cable-Membrane Structures

Search Result 42, Processing Time 0.02 seconds

A Shape Finding and Cutting Pattern Determination for Membrane Structures (막 구조물에 관한 형상 탐색과 재단도 결정법)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.175-182
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions : (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, (1) shape finding analysis formulation and an example, (2) cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

A Study on the Shape Analysis of Membrane Structures Using Line Elements (선재 요소를 이용한 막 구조물의 형상해석에 관한 연구)

  • Kim, Seung-Deog;Lee, Shin-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.45-60
    • /
    • 2010
  • Nonlinear problems for membrane structures are very sensitive in convergence procedure in nonlinear iterations. Therefore many researchers have suggested a lot of ideas in published papers. In this study, authors are trying to get easier solution for taking membrane shape by initial stresses from substitution of the membrane to line elements. To obtain nonlinear stiffness, the nonlinear finite element method is used for both membrane and cable elements, and only geometric nonlinear terms are taken for shape analysis. By some examined models, we can find that the substituted models show better results to get, initial shape in which the concentrating phenomenon is removed at edge parts.

  • PDF

A Study on Shape Determination of Cable-Net Structures with Restrained Conditions (제한조건을 갖는 케이블-네트 구조물의 형상결정에 관한 연구)

  • 이장복;권택진;하창우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.325-332
    • /
    • 1999
  • As part of the conceptual disign of cable and membrane structures, the adequate shape is decisive with respect to load bearing behaviour and aesthetic expression of the structure. The force densities which are the force-length ratio are very useful parameters for the description of equilibrium state of any general cable-net structures. Because equilibrium states are obtained by solving linear equations the force desity method has a advantage compared with other solution strategies. But if there are futher restrainted conditions in force density the linear method will be extended to nonlinear one. The numeriacl methods are based upon least square and general inverse method for sieving nonlinear eqations. In this paper, the results from two methods is compared through several examples.

  • PDF

HYBRID LIGHTWEIGHT STRUCTURES -On Recent Projects aimed at Holistic Design

  • Saitoh, Masao
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.52-66
    • /
    • 2005
  • Tension and Membrane have the potential to enable the realization of lightweight structures that have the attractive features of structures efficiency and aesthetical expression. Compared with pure (thorough-bred) tension structures such as cable net, air dome and tensegrity, so called hybrid tension structures such as beam string, tensegric system and other mixed structures have Potential still to be realized. After synnaruzubg the simple definition of tensegric structure, some holistic designs for hybrid tension structures completed recently in the author's practice are given.

  • PDF

Trolley Adaptability of Membrane Retractable Roof Under Vertical Load Considering Friction of Various Materials (다양한 재료의 마찰계수를 고려한 중소규모 연성 개폐식 트롤리의 수직하중에 대한 적용성 평가)

  • Kim, Yun-Jin;Lee, Seung-Jae;Lee, Yu-Han;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2016
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Trolley is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane closes roof completely, thus, structural behavior of trolley, which may contain various material with different friction coefficients, should be investigated by vertical load. Nummerical simulation of trolley prototypes, in this research, was performed by incrementation of vertical load. Consequently, this paper studied proper friction characteristics and provided the effective inner materials of trolley.

Evaluation of Applicability of Sliding Carriage on the Membrane Retractable Roof under Vertical and Horizontal Load Considering the Inner Holder with Various Section Characteristics (다양한 단면성질의 Inner Holder를 고려한 연성 개폐식 Sliding Carriage의 수직 및 수평하중에 대한 적용성 평가)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Sliding carriage is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane moves roof, thus, structural behavior of sliding carriage, which may contain various shapes with friction coefficients, should be investigated by vertical load as well as horizontal load. Nummerical simulation of sliding carriage prototypes, in this research, were performed by incrementation of vertical load and horizontal load as well. Consequently, this paper evaluated proper shapes of inner holder of Sliding carriage and evaluated the effective contact area of inner hold.

Modified nonlinear force density method for form-finding of membrane SAR antenna

  • Xu, Rui;Li, DongXu;Liu, Wang;Jiang, JianPing;Liao, YiHuan;Wang, Jie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1045-1059
    • /
    • 2015
  • Form-finding for cable-membrane structures is a delicate operation. During the last decades, the force density method (FDM) was considered to be an efficient method to address the problem. Many researchers were devoted to improving this method and proposed many methods such as natural force density method (NFDM), improved nonlinear force density method (INFDM), et al. In this paper, a modified nonlinear force density method (MNFDM) is proposed. In this method, the stresses of membrane elements were transformed to the force-densities of cable nets by an equivalent relationship, and then they can be used as initial conditions. By comparing with the forming finding results by using the FDM, NFDM, INFDM and MNFDM, it had demonstrated that the MNFDM presented in this paper is the most efficient and precise.

A Review of the Development of Spatial Structures in China

  • Shen, S.Z.;Lan, T.T.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.34-42
    • /
    • 2001
  • The development of contemporary spatial structures for long-span roofs in China was initiated in the 19505. Space trusses, reticulated shells and cable suspended structures have been developing rapidly since 1980s. Recently there has been a growing interest in tensile membrane structures. Comprehensive theoretical study has been carried out parallel to the engineering application, which provided necessary theoretical support to the development of different types of spatial structures.

  • PDF

A Study on the Cutting Pattern Determination for Fabric Structures (막 구조물의 재단 패턴 결정에 관한 연구)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.266-273
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions: (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, after shape finding analysis, cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

Estimation of Cable Damages using Piezo Disk and Optical Fiber Sensors (압전소자와 광섬유센서를 이용한 케이블의 손상평가)

  • Park, Kang-Geun;Kim, Ie-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.67-74
    • /
    • 2009
  • Presently means of utilizing sensors such as Piezoelectric(PZT) Element for evaluating the affect of oscillator, strain gauge for analyzing physical changes and use of Fiber Bragg Grating(FBG) Sensor are widely practiced in the field. In this study, PZT and FBG sensors were used to tearing damage of cable systems in these sensors. Cable systems are a construction of elements carrying only tension and no compression or bending in membrane structure. But damage detection of cable systems by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. If cable snaps are occurred to cable release and tear in tension structures, these are set up a vibration. So, we used piezo-electric materials and result of experiment using this was compared with result of experiment using FBG sensors The purpose of this research is to develop of damage detection method of cable system in tensile stress.

  • PDF