• Title/Summary/Keyword: Cable damage

Search Result 215, Processing Time 0.024 seconds

The analysis of checking results and electric shock accident happens at domestic and foreign low-voltage handhole (국내외 저압지중함의 감전사고 및 점검결과 분석)

  • Kim, Han-Sang;Bang, Sun-Bae;Kim, Chong-Min;Han, Woon-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.91-94
    • /
    • 2007
  • The increased use of underground power distribution as opposed to overhead lines contributes to the aesthetics of the downtown areas. But there is an inherent risk of accidental electrocution should there be damage to the insulation of the cable because of heavy rain. Should a pedestrian make contact with this cable indirectly, via a man hole cover, electrocution could result. In this paper, we analyse electrical shock accident and checking results in this low-voltage handhole.

  • PDF

A research on the actual condition of the underground manhole in domestic (국내 저압지중함의 현장실태조사)

  • Kim, Han-Sang;Kim, Chong-Min;Bae, Suk-Myong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.91-92
    • /
    • 2006
  • The increased use of underground power distribution as opposed to overhead lines contributes to the aesthetics of the downtown areas. But there is an inherent risk of accidental electrocution should there be damage to the insulation of the cable because of heavy rain. Should a pedestrian make contact with this cable indirectly, via a man hole cover, electrocution could result. In this paper, we analyse weaknesses in this low-voltage manhole and propose improvements.

  • PDF

The Study on the digital conversion present situation and consideration regarding an issue of analogue cable broadcast (아날로그 케이블 방송의 디지털 전환 현황과 쟁점에 관한 고찰)

  • Kim, Hee-Kyung;Kim, Dug-Mo
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • The digital signal is terminated on Dec.31, 2012. But most of the analog cable subscribers are faced with the difficult reception of the digital because the government has defined the terrestrial broadcast as digital transition obligation operators. It is estimated that half analog of the total pay-TV subscriber that is approximately 10million households that are directly receiving terrestrial signal must hold the digital TV or DtoA convertor to transit digital. But cable system subscriber should buy Set-top box that are expensive and pay the expensive rates. The cast of analog cable subscribers has been classified as a group that can cause the most damage after digital switch. This study investigate the problem, and cause, solution of the analog cable subscribers that are placed in the blind spots of the digital switch.

Development of Coupler for Live Cable Fault Detection Based on Reflectometry (반사파 계측법 기반의 활선 케이블 고장 검출을 위한 커플러의 개발)

  • Jeon, Jeong-Chay;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.401-406
    • /
    • 2016
  • When measuring live cable faults and their location based on reflectometry, a coupler is placed between the cable and the test system. This coupler prevents damage to the test circuits by indirectly measuring the live voltage of the cable using reflectometry. It also provides a coupling path that allows the transmission and receive signal to pass into the cable. In this study, we design and construct a contact coupler to locate faults in both dead and live cables using reflectometry. The proposed coupler is of the inductive coupling type and is constructed after the calculation of the signal transmission loss by simulation. The performance of the developed coupler is tested by measuring the transmission loss and frequency flatness. The results showed that the transmission signal loss is less than -1.98dB in the frequency bandwidth above 1 Mhz. The reflectometry system was designed based on sequence time domain reflectometry (STDR) and spread spectrum time domain reflectometry (SSTDR) in order to apply it to the detection of faults and their location in live cables and tests on live cables were performed. The test results showed that the proposed coupler can be used in a reflectometry system for live cable fault detection.

Investigation of Temperature Variation of Bridge Cables under Fire Hazard using Heat Transfer Analysis (열전달 해석을 통한 케이블교량 화재 시 케이블의 온도변화 분석)

  • Chung, Chulhun;Choi, Hyun Sung;Lee, Jungwhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.313-322
    • /
    • 2019
  • Recently, there have been frequent occurrences of bridge fires. Fires in cable-supported bridges can damage and brake cables due to high temperatures. In this study, fire scenarios that can occur on cable-supported bridges were set up. In addition, based on the results of vehicle fire tests, a fire intensity model was proposed and cable heat transfer analyses were performed on a target bridge. The analyses results demonstrated that temperature rises were identified on cables with a smaller cross-sectional area. Furthermore, vehicles other than tankers did not exceed the fire resistance criteria. When the tanker fire occurred on a bridge shoulder, the minimum diameter cable exceeded the fire resistance criteria; the height of the cable exceeding the fire resistance criteria was approximately 14 m from the surface. Therefore, the necessity of countermeasures and reinforcements of fire resistance was established. The results of this study confirmed that indirect evaluation of the temperature changes of bridge cables under fire is possible, and it was deemed necessary to further study the heat transfer analysis considering wind effects and the serviceability of the bridge when the cable temperature rises due to fire.

Mechanical Performance Study of Flexible Protection Tube for Submarine Cables (해저케이블용 유연보호튜브의 기계적 성능 연구)

  • Kyeong Soo Ahn;Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Demand for submarine cable is increasing due to advances in submarine power transmission technology and submarine cable manufacturing technology. Submarine cable use various types of protective equipment to prevent problems such as high maintenance costs in the event of cable damage and power outages during maintenance periods. Among them, flexible protection tube is a representative protective equipment to protect cables and respond to external forces such as waves and current. The flexible protection tube is made of polyurethane 85A hyperelastic material, so the calculation of mechanical behavior is carried out using mechanical properties based on experimental results. In this study, a study was conducted to determine the bending performance and tensile performance of flexible protection tube through analytical methods. The physical properties obtained through the multiaxial tensile test of polyurethane 85A were used for the analysis. Bending and tensile performance were determined for the maximum bending moment standard of 15 kN·m and the tensile load standard of 50 kN. As a result, it was confirmed that when the maximum bending moment of 15 kN·m of the flexible protection tube occurred, the bending performance of the MBR was secured at 13 m and when a tensile load of 50 kN, it was applied the maximum vertical displacement was 968 mm, confirming that the tensile performance was secured.

Vibration Control and Cost-Effectiveness Evaluation of Cable-Stayed Bridges with Semi-Active Control System (준능동 제어시스템을 이용한 사장교의 진동제어 및 비용효율성 평가)

  • Hahm, Dae-Gi;Ok, Seung-Yong;Park, Wonsuk;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.43-54
    • /
    • 2005
  • This paper presents cost-effectiveness evaluation of semi-active control system for cable-stayed bridge under earthquake excitations with various magnitudes and frequency contents. Semi-active control system, which is operated by using Bi-stale control method on the basis of linear quadratic Gaussian (LQG) optimal controller, is designed for the benchmark control problem proposed by Dyke et at. The cost-effectiveness of the proposed control system is defined by the ratio of life-cycle costs between a bridge structure with shock transmission units and a bridge structure with the semi-active control devices. The simulated results show that the damper cost has little influence on the cost-effectiveness of the semi-active control system while the cost-effectiveness is quite sensitive to the damage cost induced by the bridge failure. It is also found that the semi-active control system guarantees relatively high cost-effectiveness for the cable-stayed bridge subject to the ground motions in the regions of moderate seismicity with soft soil condition and strong seismicity with stiff soil condition.

Comparison of Underwater Drop Characteristics for Hazard Apparatuses on Subsea Cable Using Fluid-Structure Interaction Analysis (유체-구조 연성해석 기반 해저케이블 위해인자의 수중낙하 특성 비교)

  • Jang, Gyung-Ho;Kim, Jeong-Hun;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.324-332
    • /
    • 2018
  • It is known that damages to the subsea cables used for electric power transmission between islands and countries, including renewable energy from offshore wind power, current, tides, etc., cost much to restore, which causes social and economic losses. Various types of fishing rigs and anchors have been reported to be the greatest hazards to subsea cables. It is possible to design and construct a suitable protection facility for a subsea cable by precisely estimating the underwater behavior of such hazardous apparatuses. In this study, numerical simulations of the underwater behaviors of various hazardous apparatuses were carried out using fluid-structure interaction (FSI) analysis as a basic study to simulate the actual behavior phenomena of hazardous apparatuses in relation to a subsea cable. In addition, the underwater drop characteristics according to the types of hazardous apparatuses were compared. In order to verify the accuracy of the FSI analysis method used in this study, we compared the test results for underwater drops of a steel ball bearing. Stock anchors, stockless anchors, and rocket piles, which were actually reported to be the cases of damage to subsea cables along the southwest coast of Korea, were considered as the hazardous apparatuses for the numerical simulations. Each hazardous apparatus was generated by a Lagrangian model and coupled with the fluid domain idealized by the Eulerian equation to construct the three-dimensional FSI analysis model. The accuracy of the numerical simulation results was verified by comparing them with the analytical solutions, and the underwater drop characteristics according to the types of hazard apparatuses were compared.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Mechanical Performance Study of Piggy Back Clamp for Submarine Cables (해저케이블용 피기백 클램프의 기계적 성능 연구)

  • Yun Jae Kim;Kyeong Soo Ahn;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.108-114
    • /
    • 2024
  • Due to the continuously increasing global demand for electricity, the demand for high-voltage submarine cables is also increasing. One of the issues that need to be addressed for submarine cables is the high production cost and expensive laying costs. Submarine cables exposed to the marine environment encounter external forces such as wave and current, leading to issues such as cable damage due to external factors or high maintenance costs in the event of an accident. Therefore, we are preparing for the uncertainty of the submarine environment through many protective materials and protective equipment. In this study, we examined the bending performance of piggyback clamps (PBC) and strap, which are representative protective equipment, in response to the submarine environment through analytical methods. To examine the structural performance of PBC, the bending performance were assessed under the maximum bending moment criterion of 15 kN·m for the flexible protection tube. As a result, it was confirmed that the structural performance regarding the bending moment of both PBC and straps was ensured.