• 제목/요약/키워드: Cable Tie

검색결과 12건 처리시간 0.023초

CoQue - 케이블타이 구조를 이용한 휴대폰 거치대 디자인 (CoQue - Designing New SmartPhone Cradle with Cable Tie Structure)

  • 김신;김소영
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.491-495
    • /
    • 2015
  • Currently, selfie stick, a monopod take selfie photographs, got its popularity. Cradle used to connect selfie stick and smartphone usually uses electric force of spring to get smartphone fixed. But, using electric forces makes it hard to attach and detach smartphone from the cradle and gives possibility of smartphone falling down. CoQue suggests new solution of smartphone cradle by using cable tie (patent number US 8407863 B2) instead of electric force. It will give more easy and stable way of using selfie stick.

  • PDF

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

스마트 폰을 이용한 광 통신망 감시 시스템 (Optical Network Monitoring System Using Smart Phone)

  • 정소기
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.218-226
    • /
    • 2017
  • 본 논문은 스마트 폰을 활용하여 광 전송망 구간을 실시간으로 감시하는 시스템이다. 기존의 광 통신망 구간은 스마트 폰과 접속함체의 여장판에 스위치 설치를 활용하여 현장의 상황을 실시간으로 인지 하는 시스템이 없었다. 본 연구는 스마트 폰의 Application과 접속함체 스위치를 이용하여 실시간으로 유지보수를 할 수 있도록 했다. 스마트 폰 Web은 접속함체 장애 위치를 찾는데 유용하며, 접속함체 내부에 있는 여장판 벨크로 타이를 분리하면 스위치가 작동하여 심선의 밴딩을 주어서push message를 발생하게 한다. 접속함체 작업과 장애가 발생하면 스마트폰을 이용하여 OTDR측정을 하여 위치 추적을 할 수 있도록 하는 연구이다. 스마트 폰을 이용하여 실시간 광케이블 구간을 관리함으로써 장애 시간 단축과 전송망 품질을 효율적으로 유지보수 할 수 있다.

Electrolyte 가 Bow-tie 형 수트리에 미치는 영향 (Effect of electrolyte on Bow-tie Water tree)

  • 강태오;양우영;김관성;전찬오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1550-1552
    • /
    • 1994
  • In order to investigate the effect of electrolyte solutions on the activities of bow-tie water trees in XLPE insulated power cable, we have tried to observe the characteristics on water treeing ( bow-tie type ) using several electrolyte solutions such as $CH_3COOH$, $MgCl_2$,HCl and NaCl solution and tap water. Bow-tie tree density in $CH_3COOH$ and $MgCl_2$ solution was higher than in any other solution, and the growth of tree was stimulated in NaCl and $CH_3COOH$ solution, and diffusion of bow-tie trees into insulation in $MgCl_2$, HCl and NaCl solutions was faster than in $CH_3COOH$ solution and water. Also, although the increase of applied voltage caused bow-tie tree density to be high, it didn't affect the growth of tree maximum length noticeably.

  • PDF

Required ties in continuous RC beams to resist progressive collapse by catenary action

  • Alrudaini, Thaer M.S.
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.403-411
    • /
    • 2021
  • Ties are mandated by many design guidelines and codes to prevent the progressive collapse of buildings initiated by local failures. This study develops a model to estimate catenary/cable action capacity and the required ties in continuous reinforced concrete beams to bridge above the potential failed interior columns. The developed model is derived based on virtual work method and verified using test results presented in the literature. Also, parametric investigations are conducted to estimate the required ties in continuous reinforced concrete beams supporting one-way slab systems. A comparison is conducted between the estimated tie reinforcement using the developed model and that provided by satisfying the integrity provisions of the ACI 318-14 (2014) code. It is shown that the required tie reinforcements to prevent progressive collapse using the developed model are obviously larger than that provided by the integrity requirements of the ACI 318-14 (2014) code. It has been demonstrated that the increases in the demanded tie reinforcements over that provided by satisfying ACI 318-14 (2014) integrity provisions are varied between 1.01 and 1.46.

Damping and frequency of twin-cables with a cross-link and a viscous damper

  • Zhou, H.J.;Yang, X.;Peng, Y.R.;Zhou, R.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.669-682
    • /
    • 2019
  • Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous research focused on the behaviors of cable with dampers or crossties, which could help engineering community apply these mitigation devices more efficiently. However, less studies are available for hybrid applied cross-ties and dampers, especially lack of both analytical and experimental verifications. This paper studied damping and frequency of two parallel identical cables with a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix method. The complex characteristic equation was numerically solved to find the solutions. Effects of non-dimensional spring stiffness and location on the maximum cable damping, the corresponding optimum damper constant and the corresponding frequency of lower vibration mode were further addressed. System with twin small-scale cables with a cross-link and a viscous damper were tested. The damping and frequency from the test were very close to the analytical ones. The two branches of solutions: in-phase modes and the out-of-phase modes, were identified; and the two branches of solutions were different for damping and frequency behaviors.

A Five Degree-of-freedom Pen-based Cable-suspended Haptic Interface

  • Park, Kyihwan;Tie Yun;Byunghoon Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.25.4-25
    • /
    • 2001
  • In this paper, a five degree-of-freedom haptic device is proposed. The proposed haptic device has a pen which is suspended by tensioned six strings. Human operator handles the pen. Six DC motors are used as actuators to generate tensions in six strings to make resultant force feedback at the pen to the human operator Six encoders are used for calculating the movement of the pen. A digital controller is used for generate control signals for the suitable tension in the six strings. A current amplifiers is used for amplifying the control signals. Cable-suspended system has advantages of structure simplicity (only with several strings driven by motors without using other tensioning mechanisms), low inertia, and high force-to-weight ratio. Pen-based system has advantages of compactness and ...

  • PDF

Free vibrations of a two-cable network inter-supported by cross-links extended to ground

  • Zhou, H.J.;Wu, Y.H.;Li, L.X.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.653-667
    • /
    • 2019
  • Using cross-ties to connect cables together when forming a cable network is regarded as an efficient method of mitigating cable vibrations. Cross-ties have been extended and fixed on bridge decks or towers in some engineering applications. However, the dynamics of this kind of system need to be further studied, and the effects of extending cross-links to bridge decks/towers on the modal response of the system should be assessed in detail. In this paper, a system of two cables connected by an inter-supported cross-link with another lower cross-link extended to the ground is proposed and analyzed. The characteristic equation of the system is derived, and some limiting solutions in closed form of the system are derived. Roots of cable system with special configurations are also discussed, attention being given to the case when the two cables are identical. A predictable mode behavior was found when the stiffness of inter-connection cross-link and the cross-link extended to the ground were the same. The vector of mode energy distribution and the degree of mode localization index are proposed so as to distinguish global and local modes. The change of mode behaviors is further discussed in the case when the two cables are not identical. Effects of cross-link stiffness, cross-link location, mass-tension ratio, cable length ratio and frequency ratio on $1^{st}$ mode frequency and mode shape are addressed.

Application of SFCL on Bus Tie for Parallel Operation of Power Main Transformers in a Fuel Cell Power Systems

  • Chai, Hui-Seok;Kang, Byoung-Wook;Kim, Jin-Seok;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2256-2261
    • /
    • 2015
  • In the power plant using high temperature fuel cells such as Molten Carbonate Fuel Cell(MCFC), and Solid Oxide Fuel Cell(SOFC), the generated electric power per area of power generation facilities is much higher than any other renewable energy sources. - High temperature fuel cell systems are capable of operating at MW rated power output. - It also has a feature that is short for length of the line for connecting the interior of the generation facilities. In normal condition, these points are advantages for voltage drops or power losses. However, in abnormal condition such as fault occurrence in electrical system, the fault currents are increased, because of the small impedance of the short length of power cable. Commonly, to minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we divided the power plant configuration to several banks for parallel operation. However, when a fault occurs in the parallel operation system of power main transformer, the fault currents might exceed the interruption capacity of protective devices. In fact, although the internal voltage level of the fuel cell power plant is the voltage level of distribution systems, we should install the circuit breakers for transmission systems due to fault current. To resolve these problems, the SFCL has been studied as one of the noticeable devices. Therefore, we analyzed the effect of application of the SFCL on bus tie in a fuel cell power plants system using PSCAD/EMTDC.

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.