• 제목/요약/키워드: Cable Supported Bridges

검색결과 84건 처리시간 0.019초

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

완도대교의 최적 케이블장력 및 제작 Camber 산정에 관한 연구 (A Study on Optimal Cable Prestressing and Fabrication Camber of Wando Bridge)

  • 이태열;김영훈;김재권;강성원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.283-290
    • /
    • 2006
  • Cable-stayed bridge is a bridge that consists of one or more pylons, with cables supporting the deck. Cable-stayed bridges have come into wide use recently because of their economy, stability, and excellent appearance. It is possible to achieve a uniform moment distribution in the stiffening girders mainly by prestressing the cables, which leads to a more economical design in material and weight than other types of bridges. However, to achieve a more uniform moment distribution is vague objective, so it cannot be easily defined as the optimization problem. In other words, the minimization of cost or weight as the objective is not directly related to the optimization of cable prestressing. Therefore, it has been considered as one of the most important, difficult and also interesting topics among many researchers and bridge engineers to determine the optimal tensioning strategy how to apply prestressing forces of the cables of cable-stayed bridge. A number of approaches (Wang et al. 1993, $Negr\~{a}o\;and\;Sim\~{o}es$ 1997, Agrawal 1997, Janjic et al. 2003) to determine the optimal cable tensions have been proposed in the literature. Among these approaches the unit load method (Janjic et al. 2003) is considered in this paper because it can take into account the actual construction process while other approaches are based on the configuration of the final structure only. In this paper, '2-step approach' based on the unit load method is proposed to find the optimal tensioning strategy especially for the atypical asymmetric bridge under construction, which has continuous deck supported by one pylon and stay cables. Some numerical results will be given to show the validity of the new approach suggested in this paper.

  • PDF

저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답 (Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices)

  • 최은수;김주우
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.49-59
    • /
    • 2004
  • 이전 논문에서 미 중부 및 동남부 지역의 전형적인 다경간 단순효와 다경간 강거더 연속교의 지진 응답을 연구하였으며, 이런 교량에서 덱 사이의 충돌과 큰 연성이 요구되는 기둥은 취약하여 손상을 입을 수 있다는 것을 보여주었다. 더구나, 고정 및 가동 교조장치는 강한 지진운동에 쉽게 피해를 입을 수 있다. 이 논문에서는 몇 개의 개선된 고무 베어링, 납-고무 베어링 그리고 제지선을 사용하여 전형적인 다경간 단순교와 다경간 강거더 연속교의 지진 응답을 평가하였다. 납-고무 베어링은 지진에 취약한 전형적인 교량의 응답을 개선하는데 효과적인 방법으로 평가되었다. 고무 베어링은 기둥의 요구량을 줄이지만, 다경간 단순교 강거더 교량에서 덱 사이의 강한 충돌을 유발시킨다. 제지선은 일반적으로 사용되지만 다경간 단순교와 다경간 연속교의 지진에 대한 손상을 절감하는데 중간정도의 효과를 보여주었다.

  • PDF

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

케이블 교량의 등가 정적 버페팅 하중 (Equivalent static buffeting loads for cable supported bridges)

  • 권순덕;이승호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.218-221
    • /
    • 2011
  • 본 연구에서는 추계학적 해석을 통하여 구한 교량의 동적 변위와 동일한 변위를 발생시키는 등가 정적 버페팅 하중을 구하는 방법을 제시하고, 단순 양단 캔틸레버에 적용하여 타당성을 검증하였다. 모드 형상이 복잡한 사장교의 경우에 2개 이상의 모드를 포함해야 정확도를 높일 수 있는 것으로 나타났다.

  • PDF

사장교 케이블 손상 사나리오에 따른 구조 안전 수준 평가 (Structural Safety Evaluation of Cable Stayed Bridge based on Cable Damage Scenarios)

  • 김가영;서동우
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.105-111
    • /
    • 2018
  • 본 연구는 케이블 시스템의 손상으로 인한 케이블지지 교량의 안전 수준을 평가하여 재난 관리의 활용을 목적으로 한다. 국내에 다양한 형태의 케이블지지 교량(현수교 및 사장교)이 건설되었다. 이러한 교량은 복잡한 구조 요소와 시스템을 가지고 있기 때문에 효율적인 유지 관리가 필요하다. 케이블지지 교량은 종종 인적 또는 자연 재난에 따른 위험을 직면하기도 한다. 2015년 국내 공용중인 사장교에서 번개에 의한 케이블 화재 사고가 발생하였다. 이 사건으로 인해 케이블이 파단이 발생하였고, 교량 붕괴의 위험까지도 고려되었다. 또한 이 사고로 인해 엄청난 사회적 경제적 비용이 요구되었다. 이 사건 이후로 이러한 대형 인프라 시설물에 대한 리스크 기반의 유지관리가 요구되고 있다. 본 연구는 잠재적 인 케이블 피해로 인한 교량의 안전 수준을 평가하기 위하여 수행되었고, 국내의 사장교 1개소를 선정하여 효율적이고 신속한 관리를 위한 의사결정 지원을 목표로 케이블 시스템의 손상 시나리오에 따른 교량 안전 수준을 평가하였다. 사장교의 케이블 손상 시나리오에 따른 안전 수준은 FEM 해석을 통하여 분석되었다.

Damping and frequency of twin-cables with a cross-link and a viscous damper

  • Zhou, H.J.;Yang, X.;Peng, Y.R.;Zhou, R.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.669-682
    • /
    • 2019
  • Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous research focused on the behaviors of cable with dampers or crossties, which could help engineering community apply these mitigation devices more efficiently. However, less studies are available for hybrid applied cross-ties and dampers, especially lack of both analytical and experimental verifications. This paper studied damping and frequency of two parallel identical cables with a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix method. The complex characteristic equation was numerically solved to find the solutions. Effects of non-dimensional spring stiffness and location on the maximum cable damping, the corresponding optimum damper constant and the corresponding frequency of lower vibration mode were further addressed. System with twin small-scale cables with a cross-link and a viscous damper were tested. The damping and frequency from the test were very close to the analytical ones. The two branches of solutions: in-phase modes and the out-of-phase modes, were identified; and the two branches of solutions were different for damping and frequency behaviors.

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • 제11권4호
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.