• 제목/요약/키워드: Cabinet Cooling

검색결과 15건 처리시간 0.021초

산업용 건축물 내 자동제어반의 냉각효율 향상에 관한 연구 (A Study on the Enhancement of Cooling Efficiency for the Cabinet of Automatic Controller in the Interior of Industrial Building)

  • 김순호;박현정
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.79-87
    • /
    • 2013
  • The improvement of cooling efficiency for the cabinet of automatic controller is the most efficient method of it's application. Therefore, this study has been analyzed and investigated the improvement of cooling efficiency and reduction of energy for the cabinet of automatic controller, respectively. So this study was conducted to enhancement of cooling efficiency for the cabinet of automatic controller by making a structure which produces difference of air pressures in the entrance tube of external air. And the structure has capacity of the pyrogen source (PTC elements) to make temperature range from $145^{\circ}C$ to $155^{\circ}C$. Consequently, temperatures of the upper, the lower in the interior of the cabinet of automatic controller and the exhaust part were revealed $28.57^{\circ}C$, $23.38^{\circ}C$and $36.14^{\circ}C$(average temperature of the exhaust part in case of existing method : $45^{\circ}C$) in target test of this study, respectively. It was found that the cabinet of the automatic controller has better cooling ability than the cabinet of automatic controller by using an existing method.

잠열재를 이용한 통신 캐비넷용 Passive 냉각시스템 개발 (Development of Passive Cooling System for Communication Cabinet by Latent Heat Material.)

  • 정동열;박승상;백종현
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1385-1390
    • /
    • 2009
  • In this study the purpose is development of passive cooling system for telecommunication cabinet used by latent heat material. This cooling system is not required for electronic power. It was tested for the performance of the telecommunication combined latent heat material with $48^{\circ}C$ of phase changed temperature and heat pipe. At $45^{\circ}C$ of outside temperature, when heater power was 1,000 W and 1,500 W, the inside temperature of the cabinet was $55^{\circ}C$ and $62^{\circ}C$. This system was showed better performance than the other systems.

  • PDF

전자장비 캐비넷의 냉각특성에 관한 실험적 연구 (An experimental study on the cooling characteristics of electronic cabinet)

  • 박종흥;이재헌
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2356-2366
    • /
    • 1996
  • High-power electronic chips have been advanced to such an extent that the heat dissipation capability of a system design has become one of the primary limiting factors. Therefore, thermal design must be considered in the early stage of the electronic system development. In present paper, the results of an experimental study on the forced convection cooling are presented to evaluate cooling performance of an electronic cabinet which in generally used for telecommunication system. Temperatures and thermal resistances are applied to compare the heat transfer characteristics for various locations of a fan unit as well as various configuration of non-uniform powering modules. As a result, the optimal configuration of a fan unit and powering configuration is suggested for the effective thermal design of telecommunication system.

평행류 열교환기가 적용된 무선통신 중계기 냉각용 슬림형 공조기 (Slim Air-Conditioner with Parallel Flow Heat Exchangers for Cooling of Telecommunication Cabinet)

  • 조진표;김내현
    • 설비공학논문집
    • /
    • 제21권2호
    • /
    • pp.87-93
    • /
    • 2009
  • Slim telecommunication cabinet cooler, equipped with parallel flow heat exchangers and operating with R-22, is developed. The performance is compared with imported one, equipped with fin-tube heat exchangers and operating with R-134a. Test results show that the newly-developed cooler increases the cooling capacity by 6% and EER by 33%. The refrigerant charge for the developed cooler is 500g compared with 1250g for the imported one. The adoption of parallel flow heat exchanger appears to have reduced the refrigerant charge. In addition, it is shown that the reduced air flow rates through parallel heat exchangers as compared with those through fin-tube heat exchangers are beneficial to the reduction of the equipment noise.

다중 PCB 적층 모듈구조의 정보통신용 캐비넷 강제대류 냉각특성 연구 (Forced Convective Cooling Characteristics with Stacked Modules of Multi-PCBs' in Telecommunication Cabinet)

  • 김원태;김광수
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.230-239
    • /
    • 1996
  • A multi-faceted experimental investigation has been carried out to study the cooling performance for stacked modules in arrays of heat generating rectangular modules deployed along PCB's in the enclosed cabinet. The main parameters which have an important effect on cooling characteristics are flow velocity, channel spacing, installation of fan unit, attachment of heat sink, and acoustic noise. The results of individual effect are very helpful for the electronic packaging designer. In order to improve the cooling performance, it is certain that the enlargement of channel space is obviously effective, while this id disadvantageous in high density electronic packaging. Each of the paameters is quantitatively examined as cooling performance and the correlation of Reynolds number to Nusselt number is compared with previous study.

  • PDF

통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교 (Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet)

  • 김내현
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

열유동 해석을 이용한 컴퓨터 구조의 소형화 설계 (Optimal Miniaturization of Desk-Top Computer by Thermal Design)

  • 박성관
    • 한국CDE학회논문집
    • /
    • 제4권4호
    • /
    • pp.318-326
    • /
    • 1999
  • Recently, electronic systems including computers have been rapidly shrinking in size while at the same time the complexity and the capability of these systems continue to grow/sup [1]/. Thus, system volumes have decreased as system power has increased, resulting in dramatic increases in system heat density. The high temperature of the computer system is considered as the major reason for low performance and shortening life of the product. It is necessary to solve this problem due to the heat density increased and to develop the design skill of the computer cabinet according to miniaturization. M4500 desk-top computer was selected for analyzing the thermal management inside cabinet. The cabinet volume, the configuration of the heating devices, the size and location of air ventilation, and the fan selection have been investigated as the important parameters to find out an optimal cabinet design. The objectives of this project were to analyze which design parameters would affect cooling performance by thermal strategy, to design an optimal model, and to measure the temperatures of the main parts to confirm the effect of the thermal design. The temperatures of each part of the optimal model were compared with those of the existing model. As a result. the volume of this miniaturized model was about 16% smaller than that of M4500 without any change in operating performance.

  • PDF

통신 함체 냉각용 플라스틱 재질의 열교환 소자 (Heat Exchange Element Made of Plastic for Cooling of Telecommunication Cabinet)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.702-708
    • /
    • 2017
  • 함체 내의 발열은 이동통신기기의 회선 처리 능력이 증가함에 따라 계속 증가하고 있다. 이 열을 적절히 외부로 방출해 주지 않으면 중계기 내의 온도가 상승하여 전자장치 오작동의 원인이 된다. 본 연구에서는 통신 함체 냉각 모듈용 알루미늄 및 플라스틱 소자의 성능에 대해 실험을 수행하고 이론 해석 결과와도 비교하였다. 알루미늄 소자는 핏치 4.5 mm의 대향류 평행 채널로 구성되고 플라스틱 소자는 핏치 2.0 mm의 직교류 및 직교 대향류 삼각 채널로 구성되었다. 한편 직교류 소자의 크기는 알루미늄 소자와 동일하고 직교대향류 소자는 알루미늄 소자보다 33% 크다. 실험 결과 플라스틱 직교 대향류 소자의 전열량이 가장 크고 알루미늄 대향류 소자의 전열량이 가장 작게 나타났다. 또한 알루미늄 대향류 소자를 base 소자로 할 때 플라스틱 직교대향류 소자의 온도교환효율은 base 소자보다 평균 56% 크고 플라스틱 직교류 소자의 값보다는 평균 29% 크게 나타났다. 한편 플라스틱 직교대향류 소자와 base 소자의 압력손실은 유사하게 나타났다. 열교환 효율은 플라스틱 직교대향류 소자에서 가장 크고 플라스틱 직교류 소자에서 가장 작게 나타났다. 또한 이론 모델은 소자의 성능을 다소 과대 또는 과소 예측하였다.

열전소자를 이용한 배수형 전자제습기 개발 (Development of a Drain-Type Electronic Dehumidifier Using Thermoelectric Element)

  • 강덕홍;김성완;김기홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3524-3528
    • /
    • 2007
  • In this study, the Peltier effect was applied to eliminate moistures in the air enclosed by a cabinet. We have developed the new electronic dehumidifier which has a new function of automatically evaporating the condensed water inner cabinet into the outside air. To obtain this function, the processes of dehumidification is that it condensed the moistures on the cold side heat sink and drained it into the hot side heat sink by the both gravitational and capillary forces and the droplets on the hot side heat sink surface was evaporated into the air outside the cabinet by the heat conducted through the hot side heat sink surface and the forced heat convection through the fan for cooling hot side heat sink. Compared to existing electronic dehumidifiers, this manufactured one showed a good performance that the electric power consumption for the same dehumidifying quantity was reduced by 50% compared with that of existing ones.

  • PDF