• Title/Summary/Keyword: Cabin air

Search Result 188, Processing Time 0.025 seconds

Intelligent Air Quality Sensor System with Back Propagation Neural Network in Automobile

  • Lee, Seung-Chul;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.468-471
    • /
    • 2005
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. One chip sensor module which include above two sensing elements, humidity sensor and bad odor sensor was developed for AQS (air quality sensor) in automobile. With this sensor module, PIC microcontroller was designed with back propagation neural network to reduce detecting error when the motor vehicles pass through the dense fog area. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation. One chip microcontroller, Atmega128L (ATmega Ltd., USA) was used. For the control and display. And our developed system can intelligently detect the bad odor when the motor vehicles pass through the polluted air zone such as cattle farm.

  • PDF

Charge Depletion Effect on Collection Efficiency of an Electret Cabin Air Filter for Submicron Particles (승용차용 정전 필터 내의 정전 섬유의 보유 하전 감쇄에 의한 미세 입자 포집효율 변화)

  • Ji, Jun-Ho;Kang, Suk-Hoon;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.71-76
    • /
    • 2001
  • An electret filter is composed of permanently charged electet fibers and is widely used in applications requiring high collection efficiency and low-pressure drop. In this work, the collection efficiency of the filter media used in manufacturing cabin air filters was investigated by using poly-disperse particles when submicron particles are loaded. Long-term experiments were conducted by applying different charging states, which are spray electrification and charge equilibrium by bipolar ionization. In order to investigate on the effect of particle loading in filter media, NaCl particles were generated from 0.1% and 1% solutions by an atomizer. In NaCl 0.1%, the collection efficiency of electret filter decreased and then did not change in equilibrium state. In the case of relative larger particles of NaCl 1%, collection efficiency for the equilibrium charged particles increases due to the particle loading on the filter fibers. Particles charged by spray electrification are small in collection efficiency after equilibrium state and increase of filter media's pressure drop was very low in comparison of the equilibrium charged particles.

  • PDF

A Study on Improvement Plans for Flight and Cabin Crew Fatigue Management System after COVID-19 Pandemic (코로나19 팬데믹 이후 승무원 피로관리시스템 개선방안 연구)

  • Je-Hyung Jeon;Hwayoung Sung;Sua Chon;Geun-Hwa Jeong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.43-56
    • /
    • 2023
  • The aviation industry has continued to grow despite the influence of external environmental factors such as SARS and MERS. However, this growth has led to a sharp decrease in air traffic and a crisis of flight suspension due to the collapse of the global value chain and the decline of the world economy as the World Health Organization (WHO) declared a COVID-19 pandemic. Due to the decrease in the number of international flights, aviation workers such as pilots and cabin crew were exposed to high psychological stress and fatigue, such as large-scale layoffs, job instability, decrease in income, and increased risk of infection during. Recently, the international community has eased immigration restrictions through quarantine activities, and airlines are taking a step further to recover existing air demand. However, during the crisis period, a significant number of professional workers have been turned off or fired, and the physical and mental fatigue of those who can perform their duties is increasing. Therefore, this paper intends to examine the direction of policy improvement and the identification of problems in aviation safety and fatigue management after the pandemic.

Analysis of Sound Transmission Characteristics of Multi-complex Panel for Noise Reduction in High Value-added Vessel Cabin (고부가가치선 선실의 소음 저감용 복합패널의 차음특성 해석)

  • Kwon, Hyun-Wung;Hong, Suk-Youn;Kil, Hyun-Gwon;Kim, Hwa-Muk;Song, Jee-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.13-19
    • /
    • 2012
  • Recently, as the importance of the interior noise in a ship cabin has risen, ship builders have becomeconcerned about the use of noise reduction panels to reduce cabin noise. The results of previous researches have been based on analytical and experimental methods using simple sandwich panels. However, panel structures are becoming more complex to improve the transmission loss. Thus, researches that analyze the transmission loss of a panel are reaching the limit of study. This paper reports on research that was performed to determine the sound transmission characteristics of multi-complex panels applicable to high value-added vessels. It presents comparisons between analytical methods and experimental results by using a mini-reverberant chamber with components of sound attenuation panels, including the core and surface materials. The sound transmission loss of multi-complex panels are also analyzed in terms of the influences of the inside perforate plates and air gap thickness on the attenuation. Finally, the multi-complex panel with the highest noise attenuation is proposed based on the analysis results and experimental results in mini-reverberant chamber, which wereverified using a real-size reverberant chamber.

A Design of Intellectual Air-conditioning System using by CFD (CFD를 이용한 지능형 객차 공기조화시스템 설계)

  • Bae Sang-Ho;Park Duck-Shin;Yang David;Park Tae-young
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.177-182
    • /
    • 2004
  • Railroad car is one of major public transportation because of an increase in population and heavy traffic problems. We design the concept with air filtration of HVAC system using CFD, select environment-friendly components and compose intellectual HVAC system. For this object, the research to connect HVAC system which control temperature, humidity, air flow with pollutant controlling system which can deal with particular dust, nasty smell. In case of train, fresh air should be provided continuously for pleasant environment of the cabin every season. The air will control outer dust, inner particular dust, $CO_2$ density by air conditioning, heating, humidity regulating, air filtering and ventilating. Ventilation system on passenger cars should be designed for the health and comfort of the passengers.

  • PDF

A Study on the Performance Analysis of Automotive Air Conditioning System (자동차용 에어컨 시스템의 성능해석에 관한 연구)

  • 이대웅;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.304-314
    • /
    • 2002
  • Performance analysis of the automotive air-conditioning system is conducted by using computer simulation, and performance tests are carried out by using the climate wind tunnel in order to verify simulation. Evaporator and condenser were modeled by using empirical correlation which was obtained from calorimeter data, and compressor was modeled by using map based method. The steady state thermodynamic conditions of refrigerant satisfying mass and energy balance were assumed in the simulation program for automotive airconditioning system. The system performance was analyzed by finite difference method until differential air enthalpy between evaporator inlet and outlet becomes converged. Simulation results are in good agreement with experimental results at most operating conditions. Variation of discharge temperature and pressure of compressor, outlet temperature of evaporator, cooling capacity, and COP were investigated in term of air volume flow rate for evaporator, compressor capacity, compressor speed, superheat of thermostatic expansion valve, and diameter of suction line.

Study on the Removal of Carbon Dioxide in Passenger Cabin using Base-Modified Zeolites (염기 처리 제올라이트를 이용한 객실용 이산화탄소 저감방안 연구)

  • Cho, Young-Min;Lee, Ji-Yun;Kwon, Soon-Bark;Park, Duck-Shin;Choi, Jin-Shik;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.544-547
    • /
    • 2011
  • Carbon dioxide concentration of railroad passenger cabin is obliged to be kept lower than guideline values of 'Indoor air quality guideline for public transportations', but actual carbon dioxide concentration frequently exceeds this guideline value. Ventilation is most desirable to lower carbon dioxide concentration but there are some cases when the ventilation is not applicable. In this study, carbon dioxide concentration control method using adsorbents was presented. Base and zeolites, good adsorbents of carbon dioxide, were mixed and palletized. Carbon dioxide adsorption performance of this adsorbents were studied. It was found that base-modified zeolites adsorbed carbon dioxide better than zeolites only.

  • PDF

NUMERICAL ANALYSIS OF THERMAL FLOW OF CABIN INTERIOR AND DE-ICING ON AUTOMOBILE GLASS (자동차 내부 열유동해석 및 전방유리면의 해빙 전산해석)

  • Song D. W.;Park W. G.;Jang K. L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.75-80
    • /
    • 2005
  • The present work was undertaken to numerically analyze the defrosting phenomena of windshield glass. In order to analysis the phase change from frost to water on windshield glass by discharging hot air from a defroster nozzle, the flow and the temperature field of the cabin interior, the heat transfer through the windshield glass, and the phase change of frost should be solve simultaneously. In the present work, the flow field was obtained by solving 3-D incompressible Navier-Stokes equations, and the temperature field was computed from the incompressible energy equation. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change of the driven cavity were calculated. The calculation showed a good agreement with other numerical results. Then, the present code was applied to the defrosting problem of a real automobile, and a good agreement with the experimental data was also obtained.

  • PDF

Noise-source Analysis of Tactical Vehicle Using Partial Coherence Function (부분기여도함수를 이용한 전술차량 소음원 분석)

  • Park, Sungho;Lee, Kyunghyun;Han, HyungSuk;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.774-780
    • /
    • 2016
  • In this paper noise source and transfer path of tactical vehicle are analyzed with partial coherence function and spectrum analysis. Engine, transmission, structure panel and aerodynamic are main source of cabin noise. To reduce cabin noise, identifying transfer path of sources and analyzing their contribution is important. With modeling of transfer path and partial coherence function, transfer path and principal noise source can be identified. Engine/transmission and structural resonance are principal source of low frequency noise and by adding stiffener and sound absorbing material, resonance of vibration and inflow air problem can be solved.