• Title/Summary/Keyword: Cabbage field

Search Result 239, Processing Time 0.028 seconds

DESIGN AND PERFORMANCE EVALUATION OF A CABBAGE LOADER

  • Chang, Y.C.;Cho, S.I.;Yeo, Y.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.480-488
    • /
    • 2000
  • Cabbage is the most important vegetables in korea. The cabbage production was based on arduous human labor. A comprehensive research for substituting the human work by machines has been performed at present. In general, cabbage is cultivated on hillside in korea. The harvested cabbage in a field and carrying it to a vehicle for transportation are very laborious work. Hand labor in cabbage transportation to the market damages the quality of cabbage and is also a cause to increase the cost of cabbage production. This study was to design and evaluate a prototype cabbage loader for deserving efficient and safe transportation of cabbage. The developed cabbage loader was a semi-tracked vehicle operated by a hydraulic system, allowing the safe transporting and the loading of cabbage in a steep field. The maximum loading capacity of the loader was 1.0 ton. By using safety devices attached to the loader, the static slopes were 34.0% and 37.4% for the left and the rear roll-over, respectively. The maximum field speed was about 6km/hr with two cabbage pallets of 750kg at a 25% inclined field. The field capacity was about 35 pallets/hr in case of picking up, carrying and unloading two cabbage pallets. The field efficiency of the loader was analyzed to be more than 8 times in comparison of the conventional human labor. The developed loader would be applied for loading and carrying the other vegetables due to the similarity of operations. The study suggested a standard approach to the design of field machines operated in a steep field.

  • PDF

Development of a Cabbage Loader

  • Chang, Y.C.;Cho, S.I.;Park, J.G.;Yeo, W.Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.73-78
    • /
    • 2002
  • Cabbage is one of the most important vegetable in Korea. The cabbage production was mainly based on human labor A comprehensive research fur substituting the human labor by machines has been performed until now. In general, cabbage is cultivated on hillside in Korea. Picking up the harvested cabbages in field and carrying to a vehicle fur transportation are very laborious work. Manual transportation of cabbage is likely to damage the quality and is also a cause to increase the cost of cabbage production. This study was to develop and evaluate a prototype cabbage loader fur efficient and safe transportation of cabbage. The developed loader was a semi-tracked vehicle operated by a hydraulic system, allowing the safe transportation and loading of cabbage in a steep field. The maximum loading weight of the loader was 1.0 ton. By using two sets of safety devices attached to the loader to avoid the roll-over in a steep field, the static rollover slopes were increased up to 34.0% and 37.4% fur the left and the rear direction, respectively The maximum field speed was about 6km/hr with two cabbage pallets of 750kg at a 25% inclined field. The loading capacity of the loader was about 35 pallets/hr when picking up, carrying, and unloading two cabbage pallets for one loading operation. The loading capacity was more than 8 times in comparison with the conventional human labor. The developed loader could be used fur loading and carrying the other vegetables. The study suggested a possible approach for designing the field machines operated on hillside.

  • PDF

Application of Highland Kimchi Cabbage Status Map for Growth Monitoring based on Unmanned Aerial Vehicle

  • Na, Sang-Il;Park, Chan-Won;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.469-479
    • /
    • 2016
  • Kimchi cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. In particular Kimchi cabbages in a highland area are very sensitive to the fluctuations in supply and demand. Yield variability due to growth conditions dictates the market fluctuations of Kimchi cabbage price. This study was carried out to understand the distribution of the highland Kimchi cabbage growth status in Anbandeok. Anbandeok area in Gangneung, Gangwon-do, Korea is one of the main producing districts of highland Kimchi cabbage. The highland Kimchi cabbage status map of each growth factor was obtained from unmanned aerial vehicle (UAV) imagery and field survey data. Six status maps include UAVRGB image map, normalized difference vegetation index (NDVI) distribution/anomaly map, Crop distribution map, Planting/Harvest distribution map, Growth parameter map and Growth disorder map. As a result, the highland Kimchi cabbage status maps from May 31 to Sep. 6 in 2016 were presented to show spatial variability in the field. The benefits of the highland Kimchi cabbage status map can be summarized as follows: crop growth monitoring, reference for field observations and survey, the relative comparison of the growth condition in field scale, evaluation of growth in comparison of average year, change detection of annual crops or planting areas, abandoned fields monitoring, prediction of harvest season etc.

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed 2. On the Salt Tolerance of Chinese Cabbage and Cabbage in Various Salty Conditions (간척지에서 수도 및 기타작물의 내염성에 관한 연구 2. 여러 가지 염분조건에서 배추와 양배추의 내염성에 관하여)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.12 no.3
    • /
    • pp.8-14
    • /
    • 1969
  • Salt tolerances of Chinese cabbage and cabbage were observed by means of the sand culture and field experiment. The point of 50% yield reduction of Chinese Cabbage was 1% of salt concentration in sand culture. The Na absorption in the salty upland conditions was increased but the absorption of Ca, Mg were interrupted as the salt concentration was raised and there were no differences in the absorption of N and P. The Si absorption was increased at low salty conditions, but the salt concentration was raised, the absorption was interrupted drastically. The cabbage was more stronger salt tolerance than Chinese cabbage, and it was possible to prevent the salt damage significantly by planting on sloping beds instead of planting on the double-row beds in field condition.

  • PDF

Fabrication and field performance test of a tractor-mounted 6-row cabbage collector

  • Han, Kwang-Min;Ali, Mohammod;Swe, Khine Myat;Islam, Sumaiya;Chung, Sun-Ok;Kim, Dae-Geon
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.141-149
    • /
    • 2021
  • The cultivation area for domestic cabbage increased by 26.3% from 10,968 ha in 2019 to 13,854 ha in 2020, and among leafy vegetables, the cabbage cultivation area was 62%, and production was 78.9%. Demand for field crop production of cabbage, which has a relatively high-income level compared to rice farming, is increasing, and mechanization of the field operation is urgently needed due to the insufficient development of related farming machinery. In this study, a prototype fabrication and performance test of a tractor-attached cabbage collector was carried out. The transport section was divided into two parts, one for the feeding and transportation and the other for the screening and packaging to selectively collect cabbages in bulk bags or boxes. The length of the primary collecting conveyor was designed to meet the field conditions of the Korean cabbage cultivation standards so that six cultivation rows could be worked simultaneously. Power was controlled by a hydraulic transmission line of the tractor and was easily mounted onto the 3-point hitch links behind the tractor. When the performance was evaluated, the transfer rate, loss rate, damage rate, and work performance were 100, 0, 1.2%, and 1.9 h·10 a-1. Final improvement and commercialization of the prototype would considerably contribute to the mechanization of harvesting cabbage, the main ingredient of Kimchi.

Growth and salting properties influenced by culture methods, cultivars and storage packaging of kimchi cabbage (Brassica rapa) in spring

  • Lee, Jung-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.623-634
    • /
    • 2018
  • This experiment was conducted to determine the effects of the pre- and post-harvest variable factors on the processed product of kimchi cabbage. Two kimchi cabbage cultivars, namely 'Chungwang' and 'Dongpung,' were grown in a field and under a plastic greenhouse condition and stored at $5^{\circ}C$ after harvesting with and without low-density polyethylene (LDPE) film packaging. Growths were determined after harvesting while salting characteristics were determined after the processing and storage. The results show that the height, weight and leaf thickness were higher in kimchi cabbages grown in the greenhouse than those grown in the field. The plastic house culture increased the kimchi cabbage growth of the head weight, head height and leaf thickness compared with that of the open field culture. However, the osmolality and firmness were higher in the outdoor cultivated kimchi cabbages. Kimchi cabbage packed in film covered sacks and stored at $5^{\circ}C$ showed lower weight loss than unpacked cabbages during storage. Salt concentration and pH were also affected by the different pre- and post-harvest factors after salting the kimchi cabbages. Salt concentrations of the kimchi cabbage were influenced by various factors such as the cultivars, cultivation methods and storage covering. Though the present findings showed a limited difference in salt concentration and pH between the cultivars of kimchi cabbages, this study suggests that there is a relationship between processed agricultural products and their pre- and post-harvest methods.

Dominance and Distribution of Weed Occurrence on Hot Pepper, Soybean, Maize, and Chinese Cabbage Fields of Gyeongbuk Province (경북지역 고추, 콩, 옥수수, 배추밭의 잡초종 발생 분포와 우점 양상)

  • Kim, Sang Kuk;Kim, Hak Yoon
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • In this study, we surveyed the distribution pattern and dominance of weeds occurred in four summer crop fields, hot pepper, soybean, maize, and Chinese cabbage in Gyeongbuk province. The weeds were summarized as 32 family and 132 species in hot pepper field, 31 family and 116 species in soybean field, 37 family 134 species in maize field, finally 35 family and 170 species in Chinese cabbage field. Among these weeds occurred in the four summer crop fields, the compositae was commonly dominant family, it occupied 17.4% in hot pepper field, 18.1% in soybean field, 11.9% in maize field, and 16.5% in Chinese cabbage field. The major five families including compositatae, graminae, polygonaceae, convolvulaceae and cruciferae were occupied 43.2% in hot pepper field, 47.4% in soybean field, 42.5% in maize field, and 43.5% in Chinese cabbage field, respectively. Furthermore, the most dominant weed in the hot pepper, soybean, maize, and Chinese cabbage fields was Portulaca oleracea, Digitaria ciliaris, and Rorippa palustris, respectively. This information could be useful for estimation of future weed occurrence, weed population dynamics and establishment of weed control methods in food crop fields of Gyeongbuk province.

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.

Estimation of Chinese Cabbage Growth by RapidEye Imagery and Field Investigation Data

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.556-563
    • /
    • 2015
  • Chinese cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. Remote sensing has long been used as a tool to extract plant growth, cultivated area and yield information for many crops, but little research has been conducted on Chinese cabbage. This study refers to the derivation of simple Chinese cabbage growth prediction equation by using RapidEye derived vegetation index. Daesan-myeon area in Gochang-gun, Jeollabuk-do, Korea is one of main producing district of Chinese cabbage. RapidEye multi-spectral imagery was taken on the Daesan-myeon five times from early September to late October during the Chinese cabbage growing season. Meanwhile, field reflectance spectra and five plant growth parameters, including plant height (P.H.), plant diameter (P.D.), leaf height (L.H.), leaf length (L.L.) and leaf number (L.N.), were measured for about 20 plants (ten plants per plot) for each ground survey. The normalized difference vegetation index (NDVI) for each of the 20 plants was measured using an active plant growth sensor (Crop $Circle^{TM}$) at the same time. The results of correlation analysis between the vegetation indices and Chinese cabbage growth data showed that NDVI was the most suited for monitoring the L.H. (r=0.958~0.978), L.L. (r=0.950~0.971), P.H. (r=0.887~0.982), P.D. (r=0.855~0.932) and L.N. (r=0.718~0.968). Retrieval equations were developed for estimating Chinese cabbage growth parameters using NDVI. These results obtained using the NDVI is effective provided a basis for establishing retrieval algorithm for the biophysical properties of Chinese cabbage. These results will also be useful in determining the RapidEye multi-spectral imagery necessary to estimate parameters of Chinese cabbage.

Translocation of residual tricyclazole from soil to Korean cabbage (엇갈이 배추 재배토양 중 살균제 Tricyclazole의 작물 전이량)

  • Hwang, Eun-Jung;Hwang, Kyu-won;Kim, Min-Gi;Jeon, Chae-Ho;Moon, Joon-Kwan
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.301-306
    • /
    • 2017
  • This study was carried out to investigate the residual level of 5-methyl-1,2,4-triazolo[3,4-b][1.3] benzothiazole (tricyclazole) and the amount of transfer to Korean cabbage grown in treated soil with tricyclazole. The field trial on Korean cabbage was done at two different green houses located in Gwangju (Field 1) and Yongin (Field 2). Soil and cabbage samples were collected at different days after soil treatment of tricyclazole with two different concentration levels, respectively. Average recoveries of tricyclazole ranged from 83.5 to 92.1% in soil and cabbage and the variation coefficient was 1.3-6.8%. The initial concentrations of tricyclazole in field 1 soil were 4.25 and 8.97 mg/kg and decreased to 2.48 and 4.26 mg/kg at 43 DAT (day after treatment) and 0.88 and 2.02 mg/kg and decreased to 0.43 and 0.98 mg/kg at 36 DAT in field 2, respectively. The half-life of tricyclazole was about 39.6 and 28.1 days for the low and high concentration of tricyclazole treated soils in field 1 and 27.9 and 17.2 days for the low and high concentration of tricyclazole treated soils in field 2, respectively. Residual levels of tricyclazole in Korean cabbage were ranged from 4.03 to 18.26 and from 8.26 to 35.08% of initial concentration in filed 1 and field 2 soils, respectively.