• Title/Summary/Keyword: Ca3SiO5

Search Result 546, Processing Time 0.025 seconds

Chemistry and Crystallographic Studies of Metal Ion Exchanged Zeolite X. Ⅰ. The Crystal Structure of Fully Dehydrated and Fully $K^+$-Exchanged Zeolite X, $K_{92}$-X

  • 장세복;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.539-542
    • /
    • 1995
  • The crystal structure of K92-X (K92Al92Si100O384), a=25.128(1) Å, dehydrated at 360 ℃ and 2X 10-6 Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd&bar{3} at 21(1) ℃. The structure was refined to the final error indices R1=0.044 and Rw=0.039 with 242 reflections for which I<3σ(I). In this structure, ninety-two K+ ions are located at the five different crystallographic sites. Sixteen K+ ions are located at the centers of the double six rings (site I; K(1)-O(3)=2.65(2) Å and O(3)-K(1)-O(3)=92.0(6)°). About twelve K+ ions lie at site I' in the sodalite cavity opposite double six rings (D6R's) and these K+ ions are recessed ca. 1.62 Å into the sodalite cavity from their O(3) plane (K(2)-O(3)=2.74(2) Å, O(3)-K(2)-O(3)=88.5(8)°). About thirty-two K+ ions are located at the site II in the supercage and these K+ ions are recessed ca. 1.20 Å into the supercage from their O(2) plane (K(3)-O(2)=2.64(2) Å, and O(2)-K(3)-O(2)=101(1)°). About twenty-two K+ ions lie at the site III in the supercage opposite 4-ring ladder and the remaining ten K+ ions lie at the site III' near the 4-ring ladder in the supercage (K(4)-O(4)=2.88(3) Å, O(4)-K(4)-O(4)=79.8(9)°, K(5)-O(4)=2.8(2) Å, and O(4)-K(5)-O(4)=68(5)°).

Petrochemical Study of Igneous Rocks Occurring in the Northwestern Part of Keumsan Area, Chungnam-do (충남 금산군 서북부에 분포하는 화성암류에 대한 암석화학적 연구)

  • Kim, Won-Sa;Min, Kyoung-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.2 s.48
    • /
    • pp.99-109
    • /
    • 2006
  • Igneous rocks occurring in the northwesern part of Keumsan area, Chungcheongnam-do were studied petrogeochemically. The geology of this area is composed mainly of the Precambrian biotite gneiss, age-unknown Ogchon supergroup, Jurassic biotite granite, and Cretaceous volcanic rocks, pink feldspar granite and quartz porphyry. The biotite granite is gradually changes to leucocratic nature by going from center to periphery of the rock mass. It shows variation, with distance from the center, in chemical components: $SiO_2,\;Na_2O\;and\;K_2O$ increase, whereas $Fe_2O_3,\;CaO,\;P_2O_5,\;MgO,\;and\;TiO_2$ decrease. Based on geochemical data, the biotite granite and quartz porphyry belong to subalkaline series and I-type. They show calc-alkaline differentiation trend. The biotite granite shows little negative Eu-anomaly pattern, whereas quartz porphyry show marked negative Eu-anomaly pattern, indicating that quartz porphyry was evolved further, when compared with biotite granite.

A Study on the Thermal Decomposition of Alunite (명반석의 열분해)

  • 김형석;조동성
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.33-40
    • /
    • 1998
  • The formation reation of anhydrite (CaSO$_{4}$) depends upon the amount and velocity of the SO$_{3}$(g) and CaO(s) produced in the process of the thermal decomposition of alunite[K$_{2}SO_{4}{\cdot}Al_{2}(SO_{4})_{3}{\cdot}4Al(OH)_{3}$] and limestone (CaCO$_{3}$) respectively. Therefore, this study had carried out to investigate the amount and velocity of SO$_{3}$(g) produced by roasting alunite and pyrolytic materials. In air, alunite was transfouned into KAl(SO$_{4})_{2}$ and Al$_{2}O_{3}$ by dehydration at 500~580$^{\circ}C$. The dehydration velocity of alunite was found to be kt=(1-(1-${\alpha})^{1/3})^{2}$, the activation energy, 73.01 kcal/mol. SO$_{3}$(g) ware slowly produced by the thermal decomposition of KAl(SO$_{2})_{2}$, at 580~700$^{\circ}C$, rapidly, at 700~780$^{\circ}C$, The pyrolysis velocity of KAl(SO$_{4})_{2}$ was found to be kt=1-(1-${\alpha})^{1/1}$; activation energy, 66.84kcal/mol. The SiO$_{2}$ and kaolinite in alunite ore scarcely affected the temperature and velocity in which SO$_{3}$(g) were produced.

  • PDF

Effect of Fluorides on Mullitization of $SiO_2-Al_2O_3$ System; Korean Kaolin (플루오르화물이 $SiO_2-Al_2O_3$계 원료의 물라이트화에 미치는 영향)

  • 최상욱;이철규
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.61-68
    • /
    • 1980
  • The effect of the addition of various fluoreides on the mullitization of Korean crude kaolin was studied by X-ray powder diffraction and scanning electron microscopic methods. Kaolin without any addition of fluoreides began to be transformed into the mullite at 1, 10$0^{\circ}C$. Mullite peaks were discernible in the X-ray diffraction patterns of the specimens which contained fluorides equivalent to about 2 wt % fluorine, and which were sintered at 1, 05$0^{\circ}C$. The higher the concentration of fluorine in kaolin, the lower was the initiatinig temperature of mullitization. Experiments , for example, showed that mullite could be formed at 95$0^{\circ}C$ from kaolin mixed with 3.4% fluorine. Of the fluoride, addtives, sodiumsiliconfluoride $(Na_2SiF_6)$ was must effective in mullite formation of kaolin. In order of accelerating mullitization, the fluorides except $Na_2SiF_6$ could be placed in following sequence ; (1) sodium (NaF) (2) aluminium$(AlF_3)$ (3)potassium(KF) (4) ammonium$(NH_4F)$ (5) magnesium$(MgF_2)$ (6) calcium$(CaF_2)$. It was considered that the intrinsic characteristics of fluorides, such as size of ionic radiu, charge , bond strength between cation and anion, and electronegativity of cation affected millitization of halloysite, a main constituent mineral of kaolin.

  • PDF

Effect of oxalic acid on the iron content of pottery stone (도석의 탈철에 관한 Oxalic acid의 영향에 관한 연구)

  • Kim Kyung-Nam;Park Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.257-261
    • /
    • 2004
  • The pottery stones from the Taebek area consist of abundant quartz with kaolinite. In this study, the characteristics of pottery stones were examined by XRD (X-ray diffractometer), XRF (X-ray fluorescence spectrometer), TG-DTA and SEM (Scanning Electron Microscope). The chemical compositions of the raw ore showed 71.75 wt%$SiO_2$, 22.10 wt%$Al_2O_3$, 1.86 wt%CaO, 2.97 wt%$K_2O$, 0.62 wt%$Fe_2O_3$. When pottery stone of 3 mm size was leached at $80^{\circ}C$ with 10 % oxalic acid, the content of $Fe_2O_3$ was reduced from 0.62 wt% to 0.24 wt% and the whiteness was enhanced. Grinding of pottery stone was conducted by a planetary ball mill using media of zirconia, the average particle size was 2~5 $\mu\textrm{m}$.

Preparation and Nonlinear Optical Properties of CuCl-doped Nonlinear Optical Glasses : III. Bimodal Distribution of CuCl Nanocrystals and Temperature Dependent Optical Absorption Spectra (CuCl 미립자가 분산된 비선형 광학유리의 제조와 비선형 광특성: III. CuCl 반도체 미립자의 Bimodal 분포 특성과 온도에 따른 광흡수도)

  • 윤영권;한원택
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.436-442
    • /
    • 1997
  • The bimodal distribution of CuCl nano-crystals precipitated in alumino-borosilicate glass matrix (30SiO2-45B2O3-7.5Al2O3-7.5Na2O-7.5CaO-2.5GeO2(mole %)) was investigated by TEM and the temperature dependent optical spectroscopy. Two types of CuCl particles with different size were observed by TEM and it was confirmed by the splitting of Z3 absorption peak at low temperature and the occurrence of deflection point in the optical spectra with temperature.

  • PDF

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju (충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성)

  • You, Byoung-Woon;Lee, Gill Jae;Koh, Sang Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.643-659
    • /
    • 2012
  • The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.

Basalt Glass-Ceramics (현무암을 이용한 Glass-Ceramics)

  • 장승현;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.3
    • /
    • pp.151-157
    • /
    • 1980
  • Crystallization phenomena of glasses of fused natural basalt rocks were studied by DTA, X-ray phase analysis, electron microscopy, and other techniques. Crystallization was catalyzed by the addition of either chromite ore or $P_2O_5$, both up to 5 wt %. Various heat treatments were used, and their influences on controlling the microstructures and properties of the products were studied to develop high strength glass-ceramic material of the $CaO-Al_2O_3(Fe_2O_3)-MgO(FeO)-SiO_2$ system from the domestic basalts. Magnetite precipitates were found to be a nucleation initiator in every case of the crystallization. Diopside, anorthite, clinoenstatite and monticellite were identified as silicate crystalline phases contained in the crystallized products. The crystallite size was in the range of 0.1-2.5$\mu\textrm{m}$. The fine crystallites were approximately cubic, but large crystallites were either plate or needle shape. The thermal expansion coefficient, microhardness and modulus of rupture of glass-ceramics were ranged from 78.5 to 81.8$\times$10-7 cm/cm/$^{\circ}C$, from 820 to 930kg/$\textrm{mm}^2$, and from 1800 to 2800kg/$\textrm{cm}^2$, respectively.

  • PDF

Non-destructive Analysis on the Chemical Properties of Glass Beads (비파괴 분석을 통한 유리구슬의 화학적 특성 연구)

  • Park, Jae Hyung;Chung, Kwang Yong;Cho, Sun Heum
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.5-23
    • /
    • 2014
  • The possibility of non-destructive inspection glass beads for verification. Conduct a comparative analysis of the Chungcheong area with glass beads excavated Age-specific characteristics of the glass beads shall be classified by region. Trace amounts of ingredients such as CaO, $Al_2O_3$ (stabilizer), MgO, the difference is negligible. $SiO_2$ (subjects), $Na_2O$ (flux) analysis and the difference between the values was greater than in the other ingredients. Composition differences occurred rough surface to a non-uniform cross-section analysis is considered. Minimize the error value, such as the surface of carbon-coated Study, there are additional requirements. Produced at the time of the social and cultural characteristics of ancient glass and important archaeological materials, and to inform the process of cultural exchange between each region in the production of glass technology era according to the level of science and technology, arts and crafts, can be identified.

  • PDF

Low k Materials for High Frequency High Integration Modules

  • Na, Yoon-Soo;Lim, Tae-Young;Kim, Jin-Ho;Shin, Hyo-Soon;Hwang, Jong-Hee;Cho, Yong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.413-418
    • /
    • 2009
  • Glass systems based on Ca, Sr, Ba, and Zn modified alumino-boro silicates were investigated in order to improve the dielectric and mechanical properties of a typical LTCC (low temperature co-fired ceramic) which was developed for high frequency highly-integrated modules. The glass was prepared by a typical melting procedure and then mixed with cordierite fillers to fabricate glass/ceramic composite-type LTCC materials. The amount of cordierite filler was fixed at 50 volumetric%. For an optimal glass composition of 7.5% CaO, 7.5% BaO, 5% ZnO, 10% $Al_2O_3$, 30% $B_2O_3$, and 40% $SiO_2$ in mole ratio, the resultant LTCC composite showed a dielectric constant of 5.8 and a dielectric loss ($tan{\delta}$) of 0.0009 after firing at $900^{\circ}C$. An average bending strength of 160MPa was obtained for the optimal composition.