• Title/Summary/Keyword: Ca2+ Uptake

Search Result 416, Processing Time 0.026 seconds

Effects of Membrane Filtration Concentrate of Sewage Reuse Facility on Performance of Bioreactor in Sewage Treatment Facility (하수재이용시설 농축수가 하수처리장 생물반응조 운영에 미치는 영향)

  • Lim, Ji-Young;Kim, Hyun-Sik;Bae, Min-Su;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.5-14
    • /
    • 2018
  • This study investigated the effect of concentrate of membrane filtration of sewage reuse facilities on bioreactor's microorganisms in sewage treatment facility, and concentrate was analyzed, oxygen uptake rate and continuous activated sludge experiment were performed. As a results, the concentration of organic matter and TP concentration in concentrate was closely related to the concentration of SS and the concentration of ionic substances in concentrate was higher in order of $Cl^-$ > $Na^+$ > $Ca^{2+}$ > $K^+$ > $Mg^{2+}$ > $F^-$. And the analysis value of analytical items was greatly fluctuated according to sampling time of concentrate. Result of OUR test according to the mixing ratio of concentrate to sewage, it was found that the concentrate acts as an organic matter in the activated sludge microorganism and it increases with the increase of the concentrate mixing ratio. As a result of continuous activated sludge experiment, MLSS concentration, organic removal efficiency and TN removal efficiency gradually decreased with increasing concentrate mixing ratio. Based on the experimental results, expected mixing ratio of concentrate to affect the treatment efficiency of activated sludge is 25%.

Changes in Barely Yield and Soil Physcio-Chemical Properties Affected by Long-Term Fertilization to the Upland Soil (밭토양(土壤)에서 삼요소(三要素) 장기연용(長期連用)에 의(依)한 대맥(大麥) 수량(收量) 및 토양(土壤)의 이화학적(理化學的) 성질변화(性質變化))

  • Kim, Chang-Bae;Park, No-Kwuan;Park, Seon-Do;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 1993
  • A long term fertilizer trial has been conducted on a silty clayloam soil with barley as test crop since 1975. The treatments included NPK, NK, NP, and PK, and no fertilizer. This paper is to report the barley yield trend during 16 years(1975~1990) and the soil chemical properties and nutrient uptake by barley in 1990. Following is the summary of the results. 1. The average yield of barley in 16 years were in the order of NPK(100%) > PK(69%) > NP(55%) > No Fertilizer(35%) > NK(24%). Of special interst was that in 16th year the yield of barley in NK plot, namely without P, was nil. 2. In NK plot where the yield of barley was nil in 16th year, the uptake of N, P, and K by plant was lowest amomg the treatments and N, K fertilizer uptake efficiencies were nagative. 3. The soil analysis in 16th year revealed that in NK plot the pH, the available P and exchangeable Ca and Mg were very low. In 16 years average, there was positive correlation between the yield of barley and available P and exchangeable Mg in the soil. One interesting point was that in 16th year the $NO_3-N$ in the soul was relatively high, but N uptake by barley was very low.

  • PDF

Effects of Nutrient Strength and Light Intensity on Nutrient Uptake and Growth of Young Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Seedling Stage (배양액의 농도와 광강도가 단일처리전 칼랑코에 유묘의 양분흡수와 생육에 미치는 영향)

  • Lu, Yin-Ji;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • It is very important to make shorter and healthier pot plants with increased numbers of branch at a growing stage before short-day exposure. Especially light and nutrient conditions directly affect the growth and quality of the plants as described above. In this study, the effects of nutrient strength and light intensity on the nutrient uptake and growth of young Kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') during this growth stage were investigated. The plants were grown under two radiation integral (15.8 and 7.9 $mol{\cdot}m^{-2}{\cdot}d^{-1}$, PPF) and three EC (0.8, 1.6 and 2.4 $dS{\cdot}m^{-1}$) conditions. Leaf area, fresh weight, dry weight and number of branch were higher at a higher PPF, and this tendency was more evident at an EC above 1.6$dS{\cdot}m^{-1}$. The plants became higher at a lower PPF. When the EC was at 0.8 $dS{\cdot}m^{-1}$, the plants did not grow so healthy regardless of PPF conditions. EC decrement in the nutrient solution was increased with increase of nutrient strength. With growth stage, the nutrient uptake was increased with increases of nutrient strength and PPF. At a higher PPF, $NO_3-N,\;K^{+}\;and\;Ca^{2+}$ were much more absorbed, and especially the uptake of $K^{+}$ was 1.1 to 1.5 times greater than that or $NO_3-N$. From the results, the EC needed above 1.6 $dS{\cdot}m^{-1}$ during the seedling stage in order to make more healthy Kalanchoe plants having more leaf area, fresh weight, dry weight and number of branches under adequate light conditions.

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

Studies on lead uptake by crops and reduction of it's damage. -IV. Effects of application of calcium and phosphate materials on lead uptake by upland crops (농작물(農作物)에 대(對)한 납(Pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -IV. 밭작물(作物)의 납 흡수이행(吸收移行)과 석회(石灰) 및 인산(燐酸)의 영향(影響))

  • Kim, Bok-Young;Kim, Kyu-Sik;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.426-433
    • /
    • 1988
  • A pot experiment was conducted to find out the effects of application of slacked lime and fused super-phosphate on the lead uptake of upland crops in a lead added soil. Lead concentration of the soils were adjusted to 0, 150, 300mg/kg respectively. The slacked lime was applied at the equivalent amount of lime requirement with extra 150kg/10a, and 2 times for the fused superphosphate. The results obtained were as follows: 1. Lead contents in crops increased in the order: sesame > maize > potato > sweet potato > soybean > green perilla > peanut > red bean. 2. Lead contents in parts of crops were increased in the order; root > stem > leaf > grain. 3. Increasing lead concentration in soils, lead content in the plant was increased and crops yield were decreased. 4. Lead contents in soybean and green perlilla were decreased in slacked lime application treatment. 5. The lead contents in leaf and grain of soybean and green perllila decreased with decreasing in the ratio of Pb/Ca+Mg equivalent in soil. 6. Grain yield were increased in slacked lime, but were decreased in fused superphosphate application treatment. 7. With increasing the soil Pb contents, calcium and phosphate contents were increased in leaf and stem, but calcium was decreased in roots. 8. $1N-NH_4$ OAC soluble Pb contents in soil were 26-50 ppm and 42-70 ppm, respectively, for 150mg/kg and 300mg/kg lead treatments. 9. The soil pH was increased in the order of slacked lime, fused superphosphate and nontreatment.

  • PDF

Effects of the Type of Exchanged Ions and Carbon Precursors on Methane Adsorption Behavior in Zeolite Templated Carbons Synthesized Using Various Ion-Exchanged Faujasite Zeolites (이온교환된 Faujasite 제올라이트를 이용한 제올라이트 주형 탄소체 합성 시 이온 교환 금속과 탄소 전구체가 메탄 흡착 거동에 미치는 영향)

  • Ki Jun Kim;Churl-hee Cho;Dong-Woo Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • Zeolite template carbon (ZTC) was synthesized as an adsorbent to remove low-concentration CH4 from the atmosphere. The synthesis of ZTC was performed using CH4 and C2H2 as carbon precursors and their impact on adsorption was investigated. ZTC was also synthesized using Y zeolite ion-exchanged with CaCl2 and LiCl as templates to investigate the effect of using metals in ion exchange. The comparison of the carbon precursors revealed that C2H2 had a higher carbon yield than CH4. The synthesized ZTC exhibited developed micropores due to carbon deposition deep inside the micropores of the zeolite template. The kinetic diameter of C2H2 (0.33 nm) is smaller than that of CH4 (0.38 nm), which allowed for its deposition. The study compared metal precursors used for ion exchange and confirmed that the CaCl2-based ZTC developed more micropores compared to the LiCl-based ZTC. The ion-exchanged Ca inhibited pore blocking by the carbon precursor, allowing it to enter the pores. The ability of synthesized ZTC to adsorb N2 and CH4 at 298 K was investigated. The results showed that CH4 had a higher overall adsorption amount than N2. The sample synthesized using C2H2 and CaY exhibited the highest N2 and CH4 adsorption capacity. However, the sample synthesized with CH4 had the highest CH4/N2 gas uptake ratio, which is a crucial factor in designing an adsorption process. The observed difference was likely caused by the underdevelopment of ultrafine pores that are associated with N2 adsorption. This resulted in a reduction of N2 adsorption, leading to an increase in CH4/N2 separation.

Fertilization Efficiency of Livestock Manure Composts as Compared to Chemical Fertilizers for Paddy Rice Cultivation

  • Kang, Chang-Sung;Roh, An-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • To promote the practical use of livestock manure compost (LC) for paddy rice cultivation, the fertilization efficiency of nutrients in LCs was investigated compared to that of chemical fertilizer. This experiment was conducted at rice field in Hwaseong, Korea, with 6 treatments by each of 3 kinds of tested LCs, cattle manure compost (CaC), swine manure compost (SwC) and chicken manure compost (ChC). The treatments consisted of 3 application levels of LCs and 3 chemical fertilizer treatments having the same application levels with LCs. $NH_4$-N content in soil became higher according to the increase in the urea application rate, while it became lower in LC plots than in urea plots, and statistically had no significant difference among LC plots. There was a close relationship between phosphate fertilization rate and the increment of soil available phosphate content after experiment resulting y = 0.1788x - 6.169 ($R^2=0.9425$) when applied fused superphosphate fertilizer, and y = 0.0662x - 2.689 ($R^2=0.9315$) when applied LC at the equivalent rates to phosphate input (x: phosphate application rate, kg $ha^{-1}$, y: increment in soil available phosphate content, mg $kg^{-1}$). And from these two equations, the correlation on the phosphate application rate between fused superphosphate fertilizer and LC could be obtained as y = 2.7056x - 52.492 (x: $P_2O_5$ application rate of fused superphosphate, kg $ha^{-1}$, y: $P_2O_5$ application rate of LC, kg $ha^{-1}$). Plant height, number of tillers, nutrients uptake by rice, and rice yield showed higher levels in N 100% and N 150% application plots of chemical fertilizers, while every LC plots exhibited lower values and no significant difference among them. Relative nitrogen fertilization efficiencies of LCs compared to urea was 12.3% for CaC, 8.8 for SwC and 24.6 for ChC, respectively.

Modeling Nutrient Uptake of Cucumber Plant Based on Electric Conductivity and Nutrient Solution Uptake in Closed Perlite Culture (순환식 펄라이트재배에서 전기전도도와 양액흡수량을 이용한 오이 양분 흡수 모델링)

  • Hyung Jin Kim;Young Hoi Woo;Wan Soon Kim;Sam Jeung Cho;Yooun Il Nam
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 2001
  • This study was conducted to develop a nutrient uptake model in cucumnber (Cucumis sativus L. cv. Eunsung Backdadagi) plants for prediction of the amount of nutrients in drainage solution in a closed perlite culture system. Electrical conductivity (EC) of the nutrient solution was adjusted to 1.5, 1.8, 2.1, 2.4, and 2.7 dS. $m^{-1}$ . The amount of nutrient solution absorbed in different EC treatments was not different until the mid stage of growth. However, after the mid growth stage, a high EC treatment resulted in less solution absorption. The absorption rates of K, N $O_3$$^{[-10]}$ -N, Mg, and P increased continuously for a whole growing period in all treatments, while those of Ca decreased slightly. For S, the decrease was significant after th mid stage of growth. although the amounts of absorbed inorganic ions in different EC treatments were not significantly different at the first stage of growth, they were significantly different after the mid stage of growth and decreased slightly at the end of growth stage. Models for predicting the amounts of each inorganic ion absorbed were developed by using EC and the amount of nutrient solution absorbed per unit radiation(mg.M $J^{-1}$), which proved to be practical with a positive correlation at 1 percent probability between the developed model and practical values..

  • PDF

Effects of Carbon, Nitrogen Sources and pH on Direct Somatic Embryogenesis in Liquid Culture of Rehmannia glutinosa Lib. (지황의 액체배양에서 탄소원.질소원 및 pH가 직접 체세포배 형성에 미치는 영향)

  • Chae, Young-Am;Park, Ju-Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Basic informations for direct somatic embryo formation in Rehmannja glutinosa Lib. were obtained in 500ml erlenmyer flask. The ratio of ammonium to nitrate nitrogen of 825(mg/l) : 1900(mg/l) was proper condition for somatic embryo formation from stem and petiole explants and 3% sucrose was the most effective carbon source. Full strength MS medium with 2mg/l BA was better than LS medium for somatic embryogenesis. The initial pH 5.7 of medium(full strength MS with 2.0mg/l BA and 0.1mg/l NAA) was good for embryo production. Potassium ion was taken up rapidly within 2 weeks. while $Ca^{++}$ and $Mg^{++}$ ion contents were almost constant during culture period. Sucrose hydrolysis occurred throughout the culture, while glucose and fructose were absorbed simultaneously from the third week of culture.

  • PDF

Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants

  • Luo, Wanhe;Liu, Jinhuan;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.48.1-48.12
    • /
    • 2022
  • Background: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). Objectives: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. Methods: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. Results: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 ㎍/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. Conclusions: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.