• Title/Summary/Keyword: Ca-based alloy

Search Result 25, Processing Time 0.023 seconds

Evaluation of Glass-forming Ability in Ca-based Bulk Metallic Glass Systems (칼슘기 벌크 비정질 합금에서 비정질 형성능 평가)

  • Park, Eun-Soo;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.181-186
    • /
    • 2009
  • The interrelationship between new parameter ${\sigma}$ and maximum diameter $D_{max}$ is elaborated and discussed in comparison with four other glass forming ability (GFA) parameters, i.e. (1) super-cooled liquid region ${\Delta}T_x (=T_x - T_g)$, (2) reduced glass transition temperature $T_{rg} (=T_g/T_l)$, (3) K parameter $K (=[T_x-T_g]/[T_l -T_x])$, and (4) gamma parameter ${\gamma}(=[T_x]/[T_l+T_g])$ in Ca-based bulk metallic glass (BMG) systems. The ${\sigma}$ parameter, defined as ${\Delta}T^*{\times}P^'$, has a far better correlation with $D_{max}$ than the GFA parameters suggested so far, clearly indicating that the liquid phase stability and atomic size mismatch dominantly affect the GFA of Ca-based BMGs. Thus, it can be understood that the GFA of BMGs can be properly described by considering structural aspects for glass formation as well as thermodynamic and kinetic aspects for glass formation.

Microstructures and Mechanical Properties of AZ31-(0~0.5%)Ca alloys (AZ31-(0~0.5)%Ca 합금의 미세조직과 기계적 성질)

  • Jun, Joong-Hwan;Park, Bong-Koo;Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.299-304
    • /
    • 2004
  • Influence of Ca addition on microstructure and room temperature mechanical properties has been studied for AZ31(Mg-3%Al-1%Zn-0.2%Mn)-(0~0.5)%Ca wrought alloys, based on experimental results from metallography, X-ray diffractometry and mechanical tests. Yield strength, ultimate tensile strength and hardness of the alloys increased remarkably with increasing Ca content, whereas elongation was deteriorated continuously. Microstructural examination revealed that Ca addition efficiently refined grains of ${\alpha}$(Mg) phase and that some of the Ca dissolved in ${\beta}(Mg_{17}Al_{12})$ precipitates. The former and the latter facts are thought to be responsible for improved strength and loss of ductility of the AZ31+Ca wrought alloys, respectively.

Effect of Si and Ca Addition on the Strengthening Behavior of Gravity-cast AM60 Magnesium Alloys (중력주조 AM60 마그네슘 합금의 강화 거동에 미치는 Si 및 Ca 첨가영향)

  • Kim, Jae-Woo;Kim, Do-Hyang;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.364-372
    • /
    • 1998
  • Effects of Si and Ca additions on the mechanical properties of AM60 based Mg alloys have been investigated. Hardness of the AM60 based Mg alloys reached a maximum value after aging for approximately 33 hours but the amount of hardness increase was negligible. The poor age hardening response of the alloys was due to low Al content, which implies that Al content must be >6 wt.% to observe age hardening effect. The tensile and yield strength increased with increasing Al, Si, and Ca content but elongation decreased with increasing Al and Si content. The best mechanical properties obtained in AM 40-2.5Si-0.2Ca alloy after T4 heat treatment were as follows; tensile strength 193.4 MPa, yield strength 79.2 MPa, and elongation 11.2%. High temperature property obtained from creep test was also improved by introducing $Mg_2Si$ which has high hardness, high melting temperature and low thermal expansion coefficient.

  • PDF

The Effects of 2nd Metals in Pt-based Electrocatalysts on Methanol Oxidation (Pt합금 촉매에서 메탄을 산화 반응에 미치는 제2금속의 영향)

  • Kim Yeong Min;Park Gyeong Won;Choi Jong Ho;Park In Su;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.07a
    • /
    • pp.179-182
    • /
    • 2002
  • The electrooxidation of methanol was studied using Pt, PtRu(1:1), PtNi(1:1), PtRh(1:1) and PtOs(1:1) alloy nanoparticles for application as electrocatalysts. The effects of the second metals in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). There are the metallic and oxygen states in the PtRu and PtOs electrocatalysts . In the XPS of PtRu and PtOs alloy nanoparticles, the oxygen sources were dominant as the second metal's effects. Negative shifts of the binding energies of Pt for the PtNi, PtRh alloy nanoparticles were determined by XPS measurements, which can be explained by electronic effects.

  • PDF

Effect of Ca and Al Additions on the Magnetic Properties of Nanocrytalline Fe-Si-B-Nb-Cu Alloy Powder Cores

  • Moon, Sun Gyu;Kim, Ji Seung;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (${\mu}_i$ and $P_{cv}$) of the powder cores were obtained from the Ca and Al containing alloys after annealing at $530^{\circ}C$ for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.

Modeling of Microstructural Evolution in Squeeze Casting of an Al-4.5wt%Cu Alloy (용탕단조시 Al-4.5%Cu합금의 조직예측)

  • Cho, In-Sung;Hong, Chun-Pyo;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.550-555
    • /
    • 1996
  • A stochastic model, based on the coupling of the finite volume(FV) method for macroscopic heat flow calculation and a two-dimensional cellular automaton(CA) model for treating microstructural evolution was applied-for the prediction of microstructural evolution in squeeze casting. The interfacial heat transfer coefficient at the casting/die interface was evaluated as a function of time using an inverse problem method in order to provide a quantitative simulation of solidification sequences under high pressure. The effects of casting process variables on the formation of solidification grain structures and on the columnar to equiaxed transition of an Al-4.5wt%Cu alloy in squeeze casting were investigated. The calculated solidification grain structures were in good agreement with those obtained experimentally.

  • PDF

PtNi and PtRuNi Alloy catalysts for Methanol Electrooxidation (메탄올 산화 반응을 위한 PtNi과 PtRuNi 합금 촉매)

  • Park Kyeong Won;Gwon Bu Gil;Choi Jong Ho;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.37-42
    • /
    • 2001
  • The electrooxidation of methanol was studied using Pt, PtNi(1.1 and 3:1), PtRuNi and PtRu(1:1) alloy nanoparticles in sulfuric acid solution for application to a direct methanol fuel cell. The PtNi and PtRuNi alloys showed excellent catalytic activities compared to those of pure Pt and PtRu. The role of Ni in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The XPS data confirm that the chemical states of Pt are exclusively metal as well as the presence of metallic Ni, NiO, $Ni(OH)_2$, NiOOH, metallic Ru, $RuO_2$, and $RuO_3$. Negative shifts of the binding energies of Pt for the PtNi alloy nanoparticles were determined by XPS measurements. This can be explained based by assuming that the enhanced activities of PtNi alloys for methanol electrooxidation were caused by the oxide states of Ni and by the change in the electronic structure of Pt component in the alloys.

  • PDF

The Oxide Coating Effects on the Magnetic Properties of Amorphous Alloys

  • 배영제;Jang, Ho G.;Chae, Hee K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.621-625
    • /
    • 1996
  • A variety of metal oxides were coated by sol-gel process from their metal alkoxides on the ribbons of Co-based and Fe-based amorphous alloys, and the effects of surface oxide coating on the magnetic properties of the alloy are investigated. The core loss is found to be reduced significantly by the oxide coating, the loss reduction becoming more prominent at higher frequencies. The shape of the hystersis loop is also dependent upon the kind of the coated metal oxide. The coatings of MgO, SiO2, MgO·SiO2 and MgO·Al2O3 induce tensile stress into the Fe-based ribbon whereas those of BaO, Al2O3, CaO·Al2O3, SrO·Al2O3 and BaO·Al2O3 induce compressive stress. These results may be explained by the modification of domain structures via magnetoelastic interactions with the shrinkage stress induced by the sol-gel coating.

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Material Life Cycle Assessment of Mg-CaO-10 wt.% MWCNT Hydrogen Storage Composites (수소저장용 Mg-CaO-10 wt.% MWCNT 복합체의 물질 전과정 평가)

  • HAN, JEONG-HEUM;LEE, YOUNG-HWAN;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.220-226
    • /
    • 2019
  • Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. MWCNTs exhibit prominent catalytic effect on the hydrogen storage properties of $MgH_2$, weakening the interaction between Mg and H atoms and reducing the activation energy for nucleation of the metal phase by co-milling Mg with carbon nanotubes. Therefore, it is suggested that combining transition metals with carbon nanotubes as mixed dopants has a significant catalytic effect on the hydrogen storage properties of $MgH_2$. In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of Mg-CaO-10 wt.% MWCNTs composites manufacturing process. The software of material life cycle assessment (MLCA) was Gabi 6. Through this, environmental impact assessment was performed for each process.