• 제목/요약/키워드: Ca-alginate-chitosan

검색결과 13건 처리시간 0.031초

Calcium-Alginate-Chitosan의 스트론튬 이온 흡착 거동 (Adsorption Behavior of Sr Ion on Calcium-Alginate-Chitosan)

  • Lan, Dong;Bing, Deng;Lanlan, Ding;Qiong, Cheng;Yong, Yang;Yang, Du
    • 폴리머
    • /
    • 제38권5호
    • /
    • pp.557-565
    • /
    • 2014
  • Sodium alginate and chitosan are added to a $CaCl_2$ solution to prepare calcium-alginate-chitosan and calciumalginate gels. After dehydration through stoving, two types of adsorbent particles are obtained. The adsorption process of the particles obtained for low concentrations of $Sr^{2+}$ satisfies a second-order kinetic equation and the Freundlich adsorption model. The thermodynamic behaviors of the particles indicate that adsorption occurs via a spontaneous physical process. XPS pattern analysis is used to demonstrate the adsorption of $Sr^{2+}$ by calcium alginate and chitosan. By building an interaction model of the molecules of chitosan and alginate with $Ca^{2+}$ and $Sr^{2+}$ to calculate energy parameters, Fukui index, Mulliken charge, and Mulliken population, adsorption of $Sr^{2+}$ on the molecular chains of chitosan as well as the boundary of calcium-alginate-chitosan is observed to show weak stability; by contrast, adsorption between molecular chains is high.

설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성 (Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine)

  • 조애리
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권2호
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

다층 코팅 처리에 의한 기능성 섬유의 제조 - 키토산과 알지네이트로 피복된 면 - (Preparation of Functional Textiles by Multilayer Structure - Cotton Fabrics Treated with Chitosan and Alginate Skin -)

  • 손태원;이주현;이민경;조진원
    • 한국염색가공학회지
    • /
    • 제23권3호
    • /
    • pp.201-209
    • /
    • 2011
  • With a new method of applying chitosan and alginate onto cellulose, multi-coated cotton fabrics with chitosan and alginate were prepared and characterized. To coat cotton with chitosan, raw cotton was dipped in chitosan solution, mangled of 1kgf/$cm^2$, neutralized in 2 wt% NaOH soluton, washed, and dried at $60^{\circ}C$ oven. The chitosan-coated fiber was dipped in sodium alginate solution, 1kgf/$cm^2$ mangled, neutralized in 2 wt% $CaCl_2$ solution, washed, and dried at $60^{\circ}C$ oven, resulting in CCAC(coated cotton with chitosan and calcium alginate skin) fiber characteristics. Excellent absorbancy of distilled water and saline solution was observed by the absorption test on cotton fabric treated with CCAC(0.5 wt% calcium alginate) and 0.5 wt% calcium alginate respectively. The SEM photograph confirmed the uniform coating on the cotton fabric surface.

Use of Chitosan-TPP microsphere as a matrix for the encapsulation of somatic embryos of Capsicum annum var. grossum

  • Senarath, Wtpsk;Stevens, W.F.;Lee, Kui-Jae;Rehman, S.;Lee, Wang-Hyu
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.52-52
    • /
    • 2002
  • Chitosan is a key compound of shrimp waste. It is a biopolymer, which is widely used in the field of medical Sciences. Chitosan-TPP (Tripolyphosphate) complex has more or less similar physical properties as Ca-alginate which can be used for the production of synthetic seeds. Possibility of the use of Chitosan-TPP complex as a matrix for encapsulation of somatic embryos was tested against the Ca-alginate complex (2.5w/v Na-alginate, 100mM CaCl2 at pH 5.5). Somatic embryos grown in the induction medium (IM) were drawn into the viscous chitosan solution (1%) and mixed well by inverting the tube carefully. Then the mixture was dropped at regular intervals into the tripolyphosphate (TPP) solution kept on a magnetic stirrer for bead formation. Synthetic seeds formed were washed and transferred into the incubation medium, then allowed either to air-dry or freeze-dry.(중략)

  • PDF

알긴산나트륨 및 첨가제를 함유한 서방성 매트릭스 정제 (Sustained Release Matrix Tablet Containing Sodium Alginate and Excipients)

  • 신성이;이범진;이태섭;허보욱;유승구
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권3호
    • /
    • pp.187-192
    • /
    • 1996
  • The matrix tablet containing sodium alginate and $CaHPO_4$ can release drugs in a controlled fashion from hydrogel with gelling and swelling due to their interaction as water penetrates the matrices of the tablet. The purpose of this study was to evaluate release characteristics of the matrix tablet varying the amount of sodium alginate, $CaHPO_4$ and other excipients such as chitosan, hydroxypropyl methylcellulose (HPMC) and $Eudragit^{\circledR}$ RS100 in the simulated gastric and intestinal fluid. The practically soluble ibuprofen was used as a model drug. The release profiles of matrix tablet in the gastric fluid as a function of sodium alginate/$CaHPO_4$ ratio was not pronounced because of low solubility of drug and stability of alginate matrices. However, release rate of drug from the matrix tablet in the intestinal fluid was largely changed when sodium alginate/$CaHPO_4$ ratio was increased, suggesting that the ratio of sodium alginate/$CaHPO_4$ was an important factor to control the gelling and swelling of the matrix tablet. The incorporation of other excipients into the matrix tablet also influenced the release rate of drug. The chitosan and HPMC decreased the release rate of drug. No release of drug was occurred when $Eudragit^{\circledR}$ RS100 was added into the tablet. The retarded release of matrix tablet when excipients were added resulted from the hindrance of swelling and gelling of the matrix tablet containing sodium alginate and $CaHPO_4$. The hardness and bulk density of the matrix tablet was not correlated with release rate of drug in the study. From these findings, the ratio of sodium alginate and $CaHPO_4$ in the matrix tablet in addition to incorporation of excipients could be very important to control the release rate of drug in dosage form design.

  • PDF

Preparation and Characterization of Crosslinked Sodium Alginate Membranes for the Dehydration of Organic Solvents

  • Goo, Hyung Seo;Kim, In Ho;Rhim, Ji Won;Golemme, Giovanni;Muzzalupo, Rita;Drioli, Enrico;Nam, SangYong
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.55-60
    • /
    • 2004
  • In recent years, an increasing interest in membrane technology has been observed in chemical and environmental industry. Membrane technology has advantages of low cost, energy saving and environmental clean technology comparing to conventional separation processes. Pervaporation is one of new advanced membrane technology applied for separation of azeotropic mixtures, aqueous organic mixtures, organic solvent and petrochemical mixtures. Sodium alginate composite membranes were prepared for the enhancement of long-term stability of pervaporation performance of water-ethanol mixture using pervaporation. Sodium alginate membranes were crosslinked with CaCl$_2$ and coated with polyelectrolyte chitosan to protect washing out of calcium ions from the polymer. The surface structures of PAN and hydrolysed PAN membrane were confirmed by ATR Fourier transform infrared (FT-IR). A field emission scanning electron microscopy (FE-SEM; Jeol 6340F) operated at 15 kV. Concentration profiles for Ca in the membrane surface and membrane cross-section were taken by an energy dispersive X-ray (EDX) analyser (Jeol) attached to the field emission scanning electron microscopy (Jeol 6340F). Pervaporation experiments were done with several operation run times to investigate long-term stability of the membranes.

고정화 효소를 이용한 염소계 유기화합물의 분해

  • 류두현;김형수;최용욱;김진명
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.171-174
    • /
    • 2005
  • Suspected carcinogen, TCE and PCE, are the most common groundwater pollutants extensively used as a solvent and degreaser. In this study, oxygenases were immobilized in Ca-alginate and chitosan bead. TCE degradation by the immoblized enzyme beads were measured for various size, enzyme addition volume and TCE contact time. The degradation was decreased as increasing the bead size. For overnight , more than 20% of TCE was degraded. The variation of enzyme activity was tested for the repeated use of enzyme beads.

  • PDF

Development of Coencapsulating Technology for the Production of Chitosanoligosaccharides

  • Lee, Ki-Sun;Chio, Myeong-Rak;Lim, Hyun-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권5호
    • /
    • pp.345-349
    • /
    • 2000
  • To easily separate chitosanoligosaccharides by size exclusion, an coencapsulating technology of substrate and enzyme was developed. The membrane was composed of alginate and a divalent cation such as calcium. Chitosan and chitosanase were enveloped in this membrane and the product released to medium by size exclusion. The capsule was stabilized in a 2% acetic acid solution (pH 5.0) containing 0.145 M CaCO$_3$. The leakage of substrate caused by the agitation speed was controlled by increasing alginate and CaCO$_3$concentrations. The lower limit of the alginate concentration and the agitation speed were 0.5% and 49rpm, respectively. Membrane thickness and capsule diameter were 10$\mu\textrm{m}$ and 2.5mm, respectively. By TLC analysis, the composition of chitosanoligosaccharides were mainly 3-6 mers. The molecular weight distribution of the released oligosaccharides ranged from 262 to 3624 Da by GPC.

  • PDF

알긴산 나트륨을 이용한 유산균 캡슐화의 상업화 공정 개발 (Development of a Commercial Process for Micro-Encapsulation of Lactic Acid Bacteria Using Sodium Alginate)

  • 김지연;유성식
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.313-321
    • /
    • 2017
  • 바이오 고분자인 알긴산 나트륨(Sodium Alginate)을 이용하여 기존의 방법에 비해 생산성이 우수한 캡슐화의 상업화 공정을 개발하고자 하였다. 또한, 동일 공정으로 키토산을 알긴산과 함께 캡슐화하여 알긴산 나트륨으로 캡슐화 된 유산균과 비교하였다. 유산균 캡슐화의 상업화 공정의 주요 공정은 캡슐화 후 기존의 동결건조 대신에 본 연구진이 개발한 생산성이 우수한 유동화 건조 방법에 의하여 건조시간을 15~24이상 단축할 수 있었지만, 생균수는 동결건조와 유동층 건조의 비율이 1:0.75로 동결건조 방법이 좋았다. 하지만 건조에 드는 비용과 시간을 고려 해 볼 때 유동층 건조 방법으로 상업화 공정이 가능함을 확인할 수 있었다. Chitosan-alginate 캡슐은 알긴산 칼슘캡슐과 생균수를 비교하였을 때, 알긴산을 이용한 캡슐은 희석배수 $10^{-9}$, 즉 약 $1{\times}10^9$ 마리 이상의 균이 존재하고, 키토산을 이용한 캡슐은 희석배수 $10^{-3}$, 즉 약 $1{\times}10^3$ 마리의 균이 존재함을 확인 할 수 있었다. 본 연구의 기술로 제조된 유산균 캡슐은 pH 4.65, 6.01에서 96시간 이상 동안 안정하였지만, pH 7.07, 8.35에서는 1시간 이내에 모두 붕해되었다. 이는 유산균 캡슐이 위산에서 안정성을 보이고 pH 7이상을 띠는 소화기관인 소장과 대장에서는 쉽게 붕해가 일어날 수 있음을 알 수 있었다.

Therapeutic Effects of Amnion-Conjugated Chitosan-Alginate Membranes on Diabetic Wounds in an Induced Diabetic Swine Model: An In Vitro and In Vivo Study

  • Jeong, Woonhyeok;Hong, Jamin;Jung, Minho;Jang, Mijin;An, Sanghyun;Jo, Taehee;Kwon, Sunyoung;Son, Daegu
    • Archives of Plastic Surgery
    • /
    • 제49권2호
    • /
    • pp.258-265
    • /
    • 2022
  • Background Chitosan (CS) is a well-known antimicrobial dressing material. Moreover, widely used amniotic membranes contain growth factors beneficial for wound healing. Herein, we created a novel amnion-conjugated CS-alginate membrane dressing and tested its wound healing potency in a diabetic swine model. Methods The bovine amniotic powder growth factor contents were evaluated by protein assay, and the powder's wound healing effects were assessed in vitro by HaCaT cell scratch closure. In vivo, two minipigs developed streptozotocin-induced diabetes. Serial serum glucose measurements and intravenous glucose tolerance tests were performed to confirm their diabetic status. Twelve square-shaped wounds created on each pig's back were randomly divided into control (n = 4), CS (n = 4), and amnion-CS (AC; n = 4) groups and treated accordingly with different dressings. Wound healing in each group was assessed by measuring wound contraction over time, capturing wound perfusion with indocyanine green (ICG) angiography, and histologically analyzing inflammatory markers. Results Amniotic powder elution promoted HaCaT cell migration in the scratch wound model, suggesting its beneficial in vitro wound healing effects. In vivo, the CS and AC groups showed earlier wound contraction initiation and reepithelialization and earlier wound perfusion improvement by ICG angiography than the control group. Additionally, the wound size of the AC group at week 3 was significantly smaller than those in the control group. There was no significant difference in the numbers of acute and chronic inflammatory cells between the groups. Conclusion The amnion-conjugated CS-alginate membrane, as well as CS dressing alone, could be a favorable dressing option for diabetic wounds.