• Title/Summary/Keyword: Ca transient

Search Result 234, Processing Time 0.03 seconds

Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1

  • Juyeon Ko;Jinhyeong Kim;Jongyun Myeong;Misun Kwak;Insuk So
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.187-196
    • /
    • 2023
  • Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.

Role of $K^+$ Channels to Resting Membrane Potential of Rabbit Middle Cerebral Arterial Smooth Muscle Cells

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Kim, Yun-Hee;Sim, Jae-Hong;Kim, Soo-Cheon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.547-554
    • /
    • 1999
  • The aim of the present study is to investigate the contribution of $Ca^{2+} ?activated\;K^+\;(K_{Ca})$ channels and delayed rectifier $K^+\;(K_V)$ channels to the resting membrane potential (RMP) in rabbit middle cerebral arterial smooth muscle cells. The RMP and membrane currents were recorded using the whole-cell patch configuration and single $K_{Ca}$ channel was recorded using the outside-out patch configuration. Using the pipette solution containing 0.05 mM EGTA, the RMP was $-25.76{\pm}5.08$ mV (n=12) and showed spontaneous transient hyperpolarizations (STHPs). The membrane currents showed time- and voltage-dependent outward currents with spontaneous transient outward currents (STOCs). When we recorded the membrane potential using the pipette solution containing 10 mM EGTA, the RMP was depolarized and did not show STHPs. The membrane currents showed no STOCs but only showed slowly inactivating outward currents. External TEA (1 mM) reversibly inhibited the STHPs, depolarized the RMP, reduced the membrane currents, abolished STOCs, and decreased the open probability of single $K_{Ca}$ channel. When $K_V$ currents were isolated, the application of 4-AP (5 mM) depolarized the RMP. The important aspect of our results is that $K_{Ca}$ channel is responsible for the generation of the STHPs in the membrane potential and plays an important role in the regulation of the RMP and $K_V$ channel is also responsible for the regulation of the RMP in rabbit middle cerebral arterial smooth muscle cells.

  • PDF

Post-ischemic Time-dependent Activity Changes of Hippocampal CA1 cells of the Mongolian Gerbils

  • Won, Moo-Ho;Shin, Hyung-Cheul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.247-251
    • /
    • 2007
  • Changes of single unit activity of CA1 hippocampus region were investigated in anesthetized Mongolian gerbils for six days following transient ischemia. Ischemia was produced immediately before the implantation of micro-wire recording electrodes. In control animals receiving pseudo-ischemic surgery, neither spontaneous neuronal activities ($5.70{\pm}0.4Hz$) nor the number of recorded neurons per animal changed significantly for six days. Correlative firings among simultaneously recorded neurons were weak (correlation coefficient > 0.6) in the control animals. Animals subjected to ischemia exhibited a significant elevation of neural firing at post-ischemic 12 hr ($9.95{\pm}0.9Hz$) and day 1 ($8.48{\pm}0.8Hz$), but a significant depression of activity at post-ischemic day 6 ($1.84{\pm}0.3Hz$) when compared to the activities of non-ischemic control animal. Ischemia significantly (correlation coefficient > 0.6) increased correlative firings among simultaneously recorded neurons, which were prominent especially during post-ischemic days 1, 2 and 6. Although the numbers of spontaneously active neurons recorded from control group varied within normal range during the experimental period, those from ischemic group changed in post-ischemic time-dependent manner. Temporal changes of the number of cells recorded per animal between control group and ischemic group were also significantly different (p = 0.0084, t = 3.271, df = 10). Cresyl violet staining indicated significant loss of CA1 cells at post-ischemic day 7. Overall, we showed post-ischemic time-dependent, differential changes of three characteristics, including spontaneous activity, network relationship and excitability of CA1 cells, suggesting sustained neural functions. Thus, histological observation of CA1 cell death till post-ischemic day 7 may not represent actual neuronal death.

Emerging role of transient receptor potential (TRP) channels in cancer progression

  • Yang, Dongki;Kim, Jaehong
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer.

Identification of Correlative Transmission Lines for Stability Prediction

  • Cho, Yoon-Sung;Gilsoo Jang;Kwon, Sae-Hyuk;Yanchun Wang
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.15-20
    • /
    • 2001
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability discusses a methodology to identify crucial transmission lines for stability prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system, and it shows capabilities of the proposed method.

  • PDF

Expression of gus and gfp Genes in Ggrlic (Allium sativum L.) Cells Following Particle Bombardment Transformation

  • Lacorte, Cristiano;Barros, Daniella
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.135-142
    • /
    • 2000
  • The activity of promoter sequences was evaluated in garlic cells using the $\beta$-glucuronidase (GUS) gene as a reporter. Histochemical GUS assay indicated transient GUS activity in leaf, callus and root cells 48 hours after particle bombardment transformation. Quantitative fluorometric assays in extracts of transformed leaves demonstrated that the CsVMV promoter induced the highest level of gene expression, which was, on average, ten fold the level induced by CaMV35S and by the Arabidopsis Act2 promoters and two fold the level expression observed with a construct containing a double CaMV35S plus the untranslated leader sequence from AMV. No activity or very low levels were observed when cells were transformed with plasmids rontaining the typical monocot promoters, Actl, from rice or the Ubi-1, from maize. The green fluorescent protein (GFP) was also tested as a marker gene for garlic transformation. Intense fluorescence was observed in leaf, callus and root cells transformed with a construct containing the gfp gene under control of the CaMV35 Promoter. No fluorescence was detected when the gfp was under control of the Ubi-1 promoter.

  • PDF

Ginseng radix Suppresses Ischemia-induced Increase in c-Fos Expression and Apoptosis in the Hippocampal CA1 Region in Gerbils

  • Park, Keung-Ryol;Jang, Mi-Hyeon;Kim, Chang-Ju;Lee, Choong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.224-229
    • /
    • 2005
  • Ginseng radix, the root of Panax ginseng C.A.Meyer (Araliaceae), has traditionally been used for the treatment of various disorders including cerebrovascular accident (CVA). In the present study, the effect of Ginseng radix on c-Fos expression and apoptosis in the hippocampal CA1 region of gerbils following transient global ischemia was investigated via immunohistochemistry for c-Fos and caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Enhanced c-Fos-, TUNEL-, and caspase-3-positivities were detected in the hippocampal CA1 region in ischemic gerbils. Administration of the aqueous extract of Ginseng radix suppressed this ischemia-induced increment in the numbers of c-Fos-, TUNEL-, and caspase-3-positive cells. These results suggest that Ginseng radix has an inhibitive effect on the induction of c-Fos expression and apoptosis seen following transient global ischemia.

Channel Function of TRPML1 Prompts Lipolysis in Mature Adipocytes

  • Kim, Mi Seong;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.23-27
    • /
    • 2018
  • Increased intracellular levels of $Ca^{2+}$ are generally thought to negatively regulate lipolysis in mature adipocytes, whereas store-operated $Ca^{2+}$ entry was recently reported to facilitate lipolysis and attenuate lipotoxicity by inducing lipophagy. Transient receptor potential mucolipin1 (TRPML1), a $Ca^{2+}$-permeable non-selective cation channel, is mainly expressed on the lysosomal membrane and plays key roles in lysosomal homeostasis and membrane trafficking. However, the roles of TRPML1 in lipolysis remains unclear. In this study, we examined whether the channel function of TRPML1 induces lipolysis in mature adipocytes. We found that treatment of mature adipocytes with ML-SA1, a specific agonist of TRPML1, solely upregulated extracellular glycerol release, but not to the same extent as isoproterenol. In addition, knockdown of TRPML1 in mature adipocytes significantly reduced autophagic flux, regardless of ML-SA1 treatment. Our findings demonstrate that the channel function of TRPML1 partially contributes to lipid metabolism and autophagic membrane trafficking, suggesting that TRPML1, particularly the channel function of TRPML1, is as therapeutic target molecule for treating obesity.

Transient Receptor Potential Ion Channels and Animal Sensation: Lessons from Drosophila Functional Research

  • Kim, Chang-Soo
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.114-121
    • /
    • 2004
  • Ion channels of the transient receptor potential (TRP) superfamily are non-selective cationic channels with six transmembrane domains. The TRP channel made its first debut as a light-gated $Ca^{2+}$ channel in Drosophila. Recently, research on animal sensation in Drosophila disclosed other members of the TRP family that are required for touch sensation and hearing as well as the sensation of painful stimuli.

Effects of Potassium Ion and Caffeine on Contraction and Cytosolic Free $Ca^{2+}$ Levels in Vascular Smooth Muscle (혈관평할근 세포에서의 칼륨이온과 카페인의 영향: 수축과 세포내 칼슘이온 농도에 대하여)

  • Ahn, H.Y.;Karaki, H.
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.197-201
    • /
    • 1988
  • Effects of high concentration of KC1 and caffeine on cytosolic $Ca^{2+}$ level $([Ca^{2+}]_{cyt})$, measured simultaneously with muscle tension using a fluorescent intracellular $Ca^{2+}$ indicator fura 2, were examined in isolated smooth muscle of rat aorta. High $K^+$ (72.7 mM) solution induced sustained increase in both $([Ca^{2+}]_{cyt})$ and tension. In contrast to this, caffeine (20 mM) induced a rapid increase in $([Ca^{2+}]_{cyt})$ followed by a decrease to a level which was higher than the resting level. However, muscle tension showed only a transient increase followed by a decrease below the resting level. In a $Ca^{2+}-free$ solution, high $K^+-induced$ neither $([Ca^{2+}]_{cyt})$ nor tension, whereas caffeine induced a transient increase in both $([Ca^{2+}]_{cyt})$ and muscle tension. These results suggest that high $K^+-induced$ contraction in vascular smooth muscle of rat aorta is due to $Ca^{2+}$ influx whereas caffeine-induced contraction is due to $Ca^{2+}$ release from cellular store. Further, caffeine seems to have an additional effect to decrease the sensitivity of the contractile elements to $Ca^{2+}$.

  • PDF