• Title/Summary/Keyword: Ca and Mg

Search Result 5,651, Processing Time 0.036 seconds

Age Hardening and Corrosion Characteristics of Ca added Mg-Zn Alloys (Ca이 첨가된 Mg-Zn 합금의 시효경화 및 부식특성)

  • Kim, Yu-Yeong;An, In-Seop;Nam, Tae-Hyeon;Heo, Bo-Yeong
    • Korean Journal of Materials Research
    • /
    • v.7 no.11
    • /
    • pp.1012-1017
    • /
    • 1997
  • Mg-Zn-Ca합금의 잉곳트는 BN을 내벽에 바른 4x$10^{-5}$Torr의 진공의 석영관내에서 제조하였다. Mg-Zn합금계의 입자미세화를 위하여 0.5-5wt.%조성범위의 Ca를 첨가하였다. 제조된 합금을 용체화처리한 후 결정립크기와 경도를 측정하였다. Mg-6wt.%Zn합금의 입자미세화효과는 Ca가 1.5wt%첨가 될 때 최적의 조건이었다. Mg-6wt.% Zn과 Mg-6wt.% Zn-2wt.% Ca및 Mg-6wt.% Zn-1.5wt.% Si합금을 시효처리하여 시효거동을 조사하였다. 입자미세화에 의한 경도증가효과는 Mg-Zn-Ca합금계에서 크게 나타났으며 시효에 의한 경도증가효과는 Mg-Zn-Si합금계에서 크게 나타났다. Mg-6wt.%Zn합금의 부식전류밀도는 0.5wt.% Ca의 조성에서 감소되었다.

  • PDF

Ignition resistance of CaO added Mg-3Al, Mg-6Al and Mg-9Al Eco-Mg alloys (CaO가 첨가된 Mg-3Al, Mg-6Al 및 Mg-9Al Eco-Mg 합금의 발화 저항성 평가)

  • Lee, Jin-Kyu;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.60-65
    • /
    • 2011
  • Molten magnesium alloys and magnesium products are easily oxidized and burned when they are exposed to high temperature for manufacturing process and by accident. In order to solve these problems, CaO addition in magnesium alloys has been developed. The ignition resistance of CaO added Mg-3Al, Mg-6Al, and Mg-9Al Eco-Mg alloys were investigated in comparison with those of magnesium alloys without CaO. The ignition resistance was examined by three methods : DTA, furnace chip ignition test, and torch ignition test. DTA was carried out for obtaining quantitative ignition temperature data with respect to specimen geometry and test environment; the furnace ignition test for burr and chip ignition temperature data; and the torch test for ignition temperature data for manufactured products. The ignition resistance of magnesium alloys under all conditions greatly increased by CaO addition.

Comparative Assessment on Indicating Factor for Biomineralization by Bacillus Species (Bacillus종의 생광물화에 미치는 영향 인자의 비교 평가)

  • Seok, Hee-Jeong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.179-191
    • /
    • 2013
  • This study was conducted to comparatively assess quantitative indicating factor for biomineralization characterizing $CO_2$ mineralization on three type of minerals (i.e., $CaCl_2$, $MgCl_2$, $CaCl_2-MgCl_2$) in an aqueous solution amended with Bacillus pasteurii or indigenous microorganisms for a S landfill cover soil. For given three types of minerals, $NH_4{^+}$ (urease activity) was released at the highest of 88 mg/L for $MgCl_2$, then 85 mg/L for $CaCl_2$, and the lowest of 42 mg/L for $CaCl_2-MgCl_2$. $CO_2$ gas in the head space was completely removed after 12, 12, and 24 hr for $CaCl_2$, $MgCl_2$ and $CaCl_2-MgCl_2$, respectively. $Ca^{2+}$ concentration in $CaCl_2$ solution was the quickest and the greatest decreased 92% for 12 hr whereas that in $CaCl_2-MgCl_2$ solution was lower at 85% for 36 hr. $Mg^{2+}$ concentration in $MgCl_2$ was more efficiently decreased at 46% for 48 hr than that of $CaCl_2-MgCl_2$ solution of 38.5% for 72 hr. Regardless of types of minerals or their concentration, pH was changed from 5.5 to 9 by biomineralization being progressed. Microbial activity ($OD_{600}$) was also changed from 0 to 0.6. SEM images indicated that spheroidal and trapezoid shape crystal were formed, which were identified as of $CaCO_3$ (Calcite) and $MgCO_3$ (Magnesite) by X-ray diffraction. In the long run, $NH_4{^+}$ (urease activity), $CO_2$ gas, $OD_{600}$, pH, $Ca^{2+}$ and $Mg^{2+}$ would be suitable for reasonable indicating factor in order to assess the degree of biomineralization efficiency.

Critical Ratios of Ca/Al and Mg/Al in Nutrent Solution Limiting Growth of Pinus thunbergii (해송의 생육을 저해하는 Ca/Al 및 Mg/Al의 한계 비율)

  • Lee, Wi-Young;Yang, Jae E.;Park, Chang-Jin;Zhang, Yong-Seon;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.329-335
    • /
    • 2004
  • Acid deposition in forest adjacent to the industrial complexes causes soil acidification resulting in the leaching of cations, decreases of buffering capacity and increases of toxic metal concentrations such as Al, Fe, Mn and Cu in soil solution. Changes of nutrient availability equilibria by acid deposition have been known to retard the growth of pine trees. Objective of this research was to assess the critical ratios of Ca/Al and Mg/Al limiting the growth of Pinus thunbergii in the hydroponic culture. The Ca concentration and Ca/Al ratio in stalks of pine tree were increased as increasing Ca/Al molar ratio in the nutrient solution, but were not changed when the Ca/Al molar ratio was adjusted to greater than 1. Growth of Pinus thunbergii was inhibited at the Ca/Al molar ratio lower than l due to the Ca deficiency. The molar ratios of Ca/Al in the needles of Pinus thunbergii showed the similar tendency with the stalks. This indicated that Ca/Al molar ratio of 1 in the growth media was the critical level limiting the growth of Pinus thunbergii. Concentration of Mg and Mg/Al molar ratios in the stalks of pine tree were increased as increasing Mg/Al molar ratio in nutrient solution. Molar ratios of Mg/Al in the needles were increased as increasing Mg/Al ratios in nutrient solution up to 0.83, which was the critical level limiting the growth of Pinus thunbergii.

The Effect of Ce Addition on Corrosion Behavior of Permanent Mold Casting Mg-4Al-2Sn-1Ca alloy (금형 주조한 Mg-4Al-2Sn-1Ca 합금의 부식 거동에 미치는 Ce 첨가의 영향)

  • Park, Kyung Chul;Kim, Byeong Ho;Jung, Jae Woong;Cho, Dae Hyun;Park, Ik Min
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.187-193
    • /
    • 2014
  • In the present work, the effect of adding Ce on the corrosion behavior of Mg-4Al-2Sn-1Ca alloy was investigated. The studied alloys were fabricated by gravity casting method and a potentiodynamic polarization, A.C. impedance and hydrogen evolution tests were carried out in a 3.5% NaCl solution with pH 7.2 at room temperature to measure the corrosion properties of Mg-4Al-2Sn-1Ca-xCe alloys. The microstructure of the Mg-4Al-2Sn-1Ca alloy was composed of ${\alpha}$-Mg, Mg17Al12, Mg2Sn and CaMgSn phase. Also, a $Al_{11}Ce_3$ phase was newly formed by the addition of Ce. With an increase of the Ce contents, the microstructure became refined and the corrosion resistance improved.

Effects of Lime and NPK Application Rates on the Soil Charateristics after a 10-year Experiment in Oversown Hilly Pasture of Mixed Grass-Clover Sward III. Change in the mutural ratios of exchaegeable cations by the soil depth, and the visible characteristics of soil conservation (겉뿌림 산지초지에서 석회 및 3요소 시용수준이 10년후 토양특성에 미치는 영향 III. 토심별 염기간 상호비율 및 가시적 토양보존의 특성변화)

  • 정연규;이혁호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.3
    • /
    • pp.223-232
    • /
    • 1998
  • The main experiment related to this report was undertaken to assess the effects of two rates of $Ca(OH)_2$ (0, 250 kg/10a only at establishment) and five rates of $N-P_20_5-K_20$ (0-0-0, 0-10-10, 6-15-15, 12-20-20, 24-25-20 kg/10a/year) on the pasture establishment, forage yield and quality, and vegetation etc. After this 10-year main e experiment pasture had been used to assess the effects of the above treaments on the soil characteristics in oversown hilly pasture of a grass-clover sward. soil properties of mutual ratios of exchangeable cations at d different soil depth, and the visible characteristics of soil conservation obtained are summarized as follows; 1. Compared with the properties of soil fertility and the level for the likelihood grass tetany, the mutual ratios of exchangeable cations in soils; Ca:Mg:K(% of CEC), Ca:Mg:K(K=I), $K/\sqrt{Ca+Mg}$, Mg/K, K/Mg, and Ca/Mg, were discussed at different soil depth. Before and after experiment, these ratios were generally unbalance and unsuitable, and were rather worsened in the order of Mg>Ca>K under the conditions of liming and NPK fertilization without Mg. 2. The ratios of Ca and Ca/Mg were increaby liming, whereas it of $K/\sqrt{Ca+Mg}$ was redused. The ratios of K and $K/\sqrt{Ca+Mg}$ in control and the heavy fertillization of NPK(especially N) were rather lowered than those in the low and medium fertilizations of NPK. 3. The prperties of consevation were closely related with the forage productivity/vegetation rates, as affected by liming and the application rates of NPK. In control of NPK, It was shown to be the worst soil conservation; severly eroded(3rd grade), exporsure of subsoil, redish brown in soil colour, and 18.8% of cobble and stony in covering rate. 4. The improvement of soil conservation was greatly enhanced by increasing the NPK rate. In the medium and heavy fertilizations of NPK, it was shown to be the favorable improvement of soil conservation; slightly eroded(lst grade), covered with humus layer/grass residues in surface soil, dark brown in surface soil colour, under 1% of cobble and stony in covering rate. The increasing of legume yield/vegetation rate by liming rather enhanced the soil conservation of grassland.

  • PDF

Effect of Al2Ca on Oxidation Resistance and Tensile Property of Al-5Mg Alloy (Al-5Mg 합금의 내산화성 및 인장특성에 미치는 Al2Ca의 영향)

  • Ha, Seong-Ho;Yoon, Young-Ok;Kim, Shae K.
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.194-199
    • /
    • 2014
  • The effect of $Al_2Ca$ on the oxidation resistance and tensile property of Al-5Mg alloys was investigated. According to the TGA (Thermogravimetric analysis) result at $550^{\circ}C$ after 24hrs, the Al-5Mg alloy showed parabolic behavior with weight gain. On the other hand, there was almost no difference in the weight changes of the $Al_2Ca$ added Al-5Mg alloys during the oxidation. It was thought that the improvement of oxidation resistance in $Al_2Ca$ added Al-5Mg alloys might be due to the formation of a protective oxide layer with CaO and MgO on the surface. The microstructures of the alloys showed grain refinement with an increasing $Al_2Ca$ content. From the tensile test, the yield strength of the alloys were improved with an increasing $Al_2Ca$ content. The 0.07 mass%$Al_2Ca$ added Al-5Mg alloy showed similar elongation and increased strength, simultaneously. It was considered that the addition of $Al_2Ca$, which was superior in the oxidation resistance of Al, reduced the formation of Mg oxides and inclusions during the alloying. This, partly led to the improvement of tensile properties.

Effect of Sn Addition on Creep Resistance of AZ91-0.4%Ca Alloy (AZ91-0.4%Ca 합금의 크립저항성에 미치는 Sn 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.185-190
    • /
    • 2014
  • The influences of small amount of Sn addition on microstructure and creep resistance of AZ91-0.4%Ca alloy have been investigated. The microstructure of the AZ91-0.4%Ca alloy was characterized by ${\alpha}$-(Mg) dendrite cells surrounded by eutectic ${\beta}(Mg_{17}Al_{12})$ and $Al_2Ca$ phases. The 0.5%Sn addition resulted in the formation of rod-shaped CaMgSn particles with the extinction of $Al_2Ca$. The Sn-containing alloy exhibited better creep resistance below $175^{\circ}C$, but the tendency was reversed above $200^{\circ}C$. The reason was discussed in relation to the change in thermal stability of ${\beta}$ phase in response to the Sn addition.

Mechanical Behavior and Microstructure Evolution during Semi-Solid Squeeze Cast Processing of Ignition-Proof Mg-Zn-Ca-Zr Alloy

  • Chang, Si-Young;Choi, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.502-509
    • /
    • 1997
  • The mechanical behavior and microstructural evolution in the ignition-proof Mg-Zn-Ca-Zr alloy produced by the semisolid squeeze casting are clarified and the mechanical properties are also compared with those of squeeze cast Mg-Zn-Ca-Zr alloy. The tensile strength and elongation increase slightly as the solid fraction depending on temperature decreases, while the 0.2% proof stress decreases. The size of primary crystal increases with increasing holding time. The tensile strength and 0.2% proof stress of the semi-solid squeeze cast Mg-Zn-Ca-Zr alloy decrease as the size of primary crystal increases, indicating the dependence of strength on the size of primary crystal. The elongation of the semi-solid squeeze cast Mg-Zn-Ca-Zr alloy is two times as large as the squeeze cast Mg-Zn-Ca-Zr alloy and the tensile strength is unchanged despite the growth of primary crystal, resulting from the refining of the melted ${\alpha}Mg$ phase and the brittle eutectic compound as well as the reduction of solidification shrinkage and porosities.

  • PDF