• Title/Summary/Keyword: Ca and Ba-alginate

Search Result 9, Processing Time 0.025 seconds

Preparation and in Vitro Release of Melatonin-Loaded Multivalent Cationic Alginate Beads

  • Lee, Beom-Jin;Min, Geun-Hong;Kim, Tae-Wan
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.280-285
    • /
    • 1996
  • The sustained release dosage form which delivers melatonin (MT) in a circadian fashion over 8 h is of clinical value for those who have disordered circadian rhythms because of its short halflife. The purpose of this study was to evaluate the gelling properties and release characteristics of alginate beads varying multivalent cationic species $(Al^{+++}, \; Ba^{++}, \; Ca^{++}, \; Mg^{++}, \; Fe^{+++}, \; Zn^{++})$. The surface morphologies of Ca- and Ba-alginate beads were also studied using scanning electron microscope (SEM). MT, an indole amide pineal hormone was used as a model drug. The $Ca^{++}, \; Ba^{++}, \; Zn^{++}, \; Al^{++}\; and\; Fe^{+++}\; ions\; except\; Mg^{++}$ induced gelling of sodium alginate. The strength of multivalent cationic alginate beads was as follows: $Al^{+++}\llFe^{+++} the induced hydrogel beads were very fragile and less spherical. Fe-alginate beads were also fragile but stronger compared to Al-alginate beads. Ba-alginate beads had a similar gelling strength but was less spherical when compared to Ca-alginate beads. Zn-alginate beads were weaker than Ca- and Ba-alginate beads. Very crude and rough crystals of Ba- and Ca-alginate beads at higher magnifications were observed. However, the type and shape of rough crystals of Ba- and Ca-alginate beads were quite different. No significant differences in release profiles from MT-loaded multivalent cationic alginate beads were observed in the gastric fluid. Most drugs were continuously released upto 80% for 5 h, mainly governed by the passive diffusion without swelling and disintegrating the alginate beads. In the intestinal fluid, there was a significant difference iq the release profiles of MT-loaded multivalent cationic alginate beads. The release rate of Ca-alginate beads was faster when compared to other multivalent cationic alginate beads and was completed for 3 h. Ba-alginate beads had a very long lag time (7 h) and then rapidly released thereafter. MT was continuously released from Feand Zn-alginate beads with initial burstout release. It is assumed that the different release rofiles of multivalent cationic alginate beads resulted from forces of swelling and disintegration of alginate beads in addition to passive diffusion, depending on types of multivalent ions, gelling strength and drug solubility. It was estimated that 0.2M $CaCl_2$ concentration was optimal in terms of trapping efficiency of MT and gelling strength of Ca-alginate beads. In the gastric fluid, Ca-alginate beads gelled at 0.2 M $CaCl_2$ concentration had higher bead strength, resulting in the most retarded release when compared to other concentrations. In the intestinal fluid, the decreased release of Ca-alginate beads prepared at 0.2 M $CaCl_2$ concentration was also observed. However, release profiles of Ca-alginate beads were quite similar regardless of $CaCl_2$ concentration. Either too low or high $CaCl_2$ concentrations may not be useful for gelling and curing of alginate beads. Optimal $CaCl_2$ concentrations must be decided in terms of trapping efficiency and release and profiles of drug followed by curing time and gelling strength of alginate beads.

  • PDF

Removal of Ammonia-N by using the Immobilized Nitrifier Consortium in Aquaculture System (양어장에서 고정화된 질화세균군을 이용한 암모니아 질소 제거)

  • SUH Kuen-Hack;KIM Yong-Ha;AHN Kab-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.868-873
    • /
    • 1997
  • Nitrifier consortium entrapped in Ca and Ba-alginate beads were packed into two reactors and studied for removing ammonia-nitrogen in aquaculture system. The ammonia-nitrogen concentration of the influent was continually kept about 2 ppm. At the hydraulic residence time of 0.6 hours, ammonia-nitrogen removal amount of two reactors was about 52.6 and 51.0 g $NH_3-N/m^3/day$, respectively. The ability of adjusting to an impulsive leading which was happened according to variations of HRT was better at Ba-alginate reactor, but its discrepancy was not so large. At the respect of removing ammonium-nitrogen, two reactors showed the similar ability of treating recirculating water.

  • PDF

Biosorption of Copper by the Immobilized biomass of Barine Brown Algae(Phaeophyta) Hizikia fusiformis (해양 갈조류인 톳의 고정화된 생물질에 의한 구리의 생흡착)

  • 이민규;박경태;감상규
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.208-215
    • /
    • 1998
  • It was investigated the biosorption performances of copper by the immobilized biomass of nonliving marine brown alge h. fusiformis by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. The copper uptake by the immobilized biomass of the immobilization method decreased in the following sequence; Ca-ALG>Ba-ALG>PEG>CARR among the immoblization emthods. The copper uptake by the immobilized biomass followed the Langmuir isotherm better than the Freundlich isotherm.

  • PDF

Characteristics of Salt Adsorption by Calcium Alginate Beads (칼슘알긴산비드에 의한 염분의 흡착특성)

  • 방병호;서정숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The adsorption characteristics of sodium chloride into Ca-alginate beads have been investigated and the result were as follows: Sodium chloride uptake by Ca-alginate beads increased with time. The highest uptake volume of sodium chloride was 4.2g after 10 minutes. The uptake volume by Fe, Ca, Ba, and Sr-alginate beads was 5.6g, 4.2g, 4.2g and 4.0g, respectively but in case of Fe-alginate beads, the induced hydrogel beads were very fragile and the strength of Fe-alginate beads were weaker than Ca- and Ba-alginate beads. Mg-alginate bead was not formed and Ca-, Ba- and Sr-alginate beads had a similar uptake volume about 4.2g, respectively. The uptake volume of sodium chloride by CaCl$_2$concentration(0.1M. 0.2M and 1M), curing solution, was 4.8, 4.2g and 4.1g, respectively. The uptake volume by sodium alginate concentration(0.6%, 1% and 2%) was 2.8g, 4.0g, and 4.4g, respectively and Ca-alginate bead size was not effected in uptake sodium chloride. The uptake rate on initial sodium chloride concentration(4%, 8%, 12% and 16%) was 30%, 28%, 27% and 25%, respectively. The uptake rate on basic pH(10.0) was higher than when compared to other neutral pH(6.8) and acidic pH(4.0). The initial uptake velocity of sodium chloride from immobilization beads with salt resistant bacteria was lower than that of non-immobilization beads. The uptake rate of sodium chloride was decreased according to elongation of curing time. Reusability of Ca-alginate beads was possible but according to reutilization, the salt uptake volume of beads was also decreased. The uptake volume of sodium chloride from Doengjang by Ca-alginate beads on time course(3, 6, 12, and 24 hour) was revealed 5g, 6g, 7g and 7g, respectively.

Biosorption of Heavy Metal lons by Biomass of Marine Brown Algae in Cheju using Their Immobilization Techniques: Biosorption of Copper by Undaria pinnatifida

  • Kam Sang-Kyu;Lee Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.157-166
    • /
    • 1997
  • The biosorption performances of copper were investigated by the immobilized biomass of nonliving marine brown algae Undaria pinnatifida by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. Among the immobilization methods, the copper uptake decreased in the following sequence: Ca-ALG > Ba-ALG > PEG > CARR. The pattern of copper uptake by the immobilized biomass fitted the Langmuir isotherm better than the Freundlich isotherm. Desorption of deposited copper with 0.05 ~0.5M HCI, resulted in no changes of the copper uptake capacity of the immobilized biomass by the immobilization methods except for PEG, through five subsequent biosorption/desorption cycles. There was no damage to the immobilized biomass which retained its macroscopic appearance in repeated copper uptake/elution cycles.

  • PDF

Characterization of Recombinant PolyG-Specific Lyase from a Marine Bacterium, Streptomyces sp. M3 (해양세균 Streptomyces sp. M3로 부터 얻은 재조합 polyG-specific lyase의 특성)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1582-1588
    • /
    • 2010
  • A new alginate lyase gene of marine bacterium Streptomyces sp. M3 had been previously cloned in pColdI vector and transformed into E. coli BL21 (DE3). In this study, M3 lyase protein without signal peptide was overexpressed by induction with IPTG and purified with Ni-Sepharose affinity chromatography. The absorbance at 235 nm of the reaction mixture and TLC analysis showed that M3 alginate lyase was a polyG-specific lyase. When M3 lyase was assayed with substrate for 10 min, optimum pH and optimum temperature were pH 9 and $60^{\circ}C$. For the effect of 1mM metal ion on M3 lyase activity, $Ca^{++}$ and $Mn^{++}$ ions increased the alginate degrading activity by two-fold, whereas $Hg^{++}$ and $Zn^{++}$ ions inhibited the lyase activity completely. $Mg^{++}$, $Co^{++}$, $Na^+$, $K^+$, and $Ba^{++}$ did not show any strong effects on alginate lyase activity.

Removal of Ammonia-N by Immobilized Nitrifier Consortium (고정화된 질화 세균군에 의한 암모니아성 질소 제거)

  • 서근학;김병진;조문철;조진구;김용하;김성구
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.238-243
    • /
    • 1998
  • Nitrifier consortium immobilized in Ca and Ba-alginate beads were packed into two bioreactors and the performances of bioreactors were evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. The total ammonia nitrogen (TAN) concentration of the influent was continually kept about 2g TAN/㎥. At the HRT of 0.6hr, ammonia nitrogen removal rate of two bioreactors were about 52.6 and 51.0g TAN/$\textrm{m}^3$/day, respectively. At the respect of ammonia nitrogen removal, two bioreactor showed the similar abilities. The second trial with nitrifier consortium immobilized in Ca-alginate bead was carried out to evaluate the ammonia nitrogen removal rate for 35 days. The highest ammonia nitrogen removal rate was 82g TAN/$\textrm{m}^3$ when HRT was about 0.3hr.

  • PDF

Biosorption of Heavy Metal Sons by Biomass of Marine Brown Algae in Cheju using Their immobilization Techniques: Biosorption of Copper by Undaria pinnatifida

  • Sang-Kyu Kam;Min-Gyu Lee
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.157-166
    • /
    • 1992
  • The biosorptlon perFormances of copper were Investigated by the immobilized biomass of nonliving marine brown algae Undaria pinnatifida by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. Among the immobilization methods, the copper uptake decreased in the following sequence: Ca-ALG > Ba-ALG > PEG > CARR. The pattern of copper uptake by the immobilized biomass fitted the Langmuir isotherm better than the Freundlich isotherm. Desorption of deposited copper with 0.05 ~0.5M HCI, resulted in no changes of the copper uptake capacity of the immobilized biomass by the immobilization methods except for PEG, through five subsequent biosorptioydesorption cycles. There was no damage to the immobilized biomass which retained its macroscopic appearance in repeated copper uptake/elution cycles.

  • PDF

Effect of Various Factors on the Operational Stability of Immobilized Cells for Acrylamide Production in a Packed Bed Reactor

  • Lee, Cheo-Young;Choi, Sang-Kyo;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 1993
  • The effect of concentrations of phosphate buffer and acrylonitrile, pH, and various salts on the operational stability of the immobilized cells of Brevibacterium CH2 in a packed bed reactor were investigated. The effects of salts and carriers on the swelling of the immobilized beads during hydrolysis in a columnreactor were also investigated. Immobilization of the cells in Ba-alginate was more desirable than those in polyacrylamide and Ca-alinate for the swelling of the immobilized beads and the desired quality of the acrylamide produced. High quality acrylamide was produced using the Ba-alginate beads in a recycle fed-batch reactor without using an isotonic substrate. The conversion yield was nearly 100%, including a trace amount of acrylic acid produced as a by-product.

  • PDF