• Title/Summary/Keyword: CYP4 family

Search Result 24, Processing Time 0.02 seconds

Molecular Cloning of Cytochrome P450 Family Gene Fragment from Midgut of the Beet Armyworm, Spodoptera exigua

  • Moon, Jae-Yu;Lee, Pyeongjae;Cho, Il-Je;Kim, Iksoo;Lee, Heui-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.155-162
    • /
    • 2002
  • Cytochrome P45O (CYP) gene has been known to play one of the most important roles in metabolizing the exogenous materials. In insect, CYP is particularly known to detoxify toxic materials by adding oxygen molecule to the hydrophobic region of the materials. Thus, CYP-dependent metabolism is associated with the adaptation of insect to host plant chemicals. This in turn is known to be one of the driving forces for CYP diversification. In the present study, we cloned seven gene fragments of CYP 4 (CYP4) family from the midgut of the beet armyworm, Spodoptera exigua, through RT.PCT, Sequence analysis of the product showed the gene fragment to contain an open reading frame of ~150 amino acids, consisted of ~450 bp. The cloned gene fragments contained typical, conserved regions found in CYP4 family. Pairwise comparison of the deduced amino acid sequences among seven clones ranged in divergence from 0% to 52.86% and resulted in five distinct clones. The other two clones were identical or differ by one amino acid respectively to the corresponding clone, although each differed by ten nucleotides. Analysis of correlation between GenBank-registered, full length CYP4 and the cloned fragments resulted in statistically significant relationship ($r^{2}$ = 0.96085; p < 0.001), suggesting utility of the partial sequences as such full-length sequences. Phylogenetic analysis of the clones with GenBank-registered insect and mammal CYP4 family sequences by parsimony and several distance methods subdivided the clones into two groups: tones belonging to CYP4S and the others to CYP4M families.

Cytochrome P450 1 gene in Eel, Anguilla japonica: cloning and expression patterns after exposure to benzo[a]pyrene (뱀장어(Anguilla japonica)에서 Cytochrome P450 1 gene 클로닝 및 benzo[a]pyrene 노출에 따른 발현 분석)

  • Jo, Hyun Ho;Kim, Ju An;Lee, Seung Hyun;Chung, Joon Ki
    • Journal of fish pathology
    • /
    • v.33 no.2
    • /
    • pp.153-161
    • /
    • 2020
  • Cytochrome P450(CYP) gene is involved in the biotransformation of drugs and environmental pollutants. In this study, we analyzed the nucleotide sequence of the Anguilla japonica CYP1(AjCYP1) family gene and examined the relative expression of AjCYP1A, AjCYP1B and AjCYP1C1 in response to the exposure to environmental pollutants. After exposure to B[a]P 20mg/kg bw, the expression of AjCYP1 family gene increased over time. Among four tissues examined (liver, spleen, gill and kidney), AjCYP1 family gene was expressed significantly in the kidney. Compared with the control group, AjCYP1A was expressed about 5-fold at 48 hr, AjCYP1B about 6-fold at 24 hr, and AjCYP1C1 about 4-fold at 24 hr. However, after exposure to B[a]P 200mg/kg bw, AjCYP1A did not change in all tissues. On the other hand, AjCYP1B was expressed at about 4-fold at 24 hr in the spleen and 4-fold at 48 hr in the gill. Finally AjCYP1C1 was expressed 3.7-fold and 4.3-fold in the spleen and kidneys at 48 hr, respectively. Taken together, our results suggest that the expression of AjCYP1 gene in eel tissues might be used as a useful tool to assess the exposure to environmental pollutants in aquaculture system.

Isolation and Nucleotide Sequence Characterization of Novel Cytochrome P450 Hydroxylase Genes from Rare Actinomycetes, Sebekia benihana (희소 방선균 Sebekia benihana 유래 신규 사이토크롬 P450 하이드록실레이즈 유전자군 분리 및 염기서열 특성규명)

  • 박남실;박현주;한규범;김상년;김응수
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.308-314
    • /
    • 2004
  • A degenerate set of PCR primers based on two conserved regions (heme binding region and oxygen ligand pocket) were designed and successfully applied to amplify DNA fragments of cytochrome P450 hydroxylase (CYP) genes from a rare actinomycetes, S. benihana. The PCR amplified products were employed as a DNA probe to clone the entire CYP genes from S. benihana genomic library. Five different CYP-positive cosmids were isolated by colony hybridization as well as PCR confirmation. The complete nucleotide sequencing of five different CYP genes revealed that each unique CYP showed a significant amino acid homology to previously-known CYP genes involved in streptomycetes secondary metabolism. In addition, four CYP genes (CYP502, CYP503, CYP504, CYP506) were found to be linked to ferredoxin genes in the chromosome, and the CYP503 gene showed the high degree of amino acid similarity to the previously well-characterized CYP105 family in streptomycetes.

Caffeine Induces High Expression of cyp-35A Family Genes and Inhibits the Early Larval Development in Caenorhabditis elegans

  • Min, Hyemin;Kawasaki, Ichiro;Gong, Joomi;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.236-242
    • /
    • 2015
  • Intake of caffeine during pregnancy can cause retardation of fetal development. Although the significant influence of caffeine on animal development is widely recognized, much remains unknown about its mode of action because of its pleiotropic effects on living organisms. In the present study, by using Caenorhabditis elegans as a model organism, the effects of caffeine on development were examined. Brood size, embryonic lethality, and percent larval development were investigated, and caffeine was found to inhibit the development of C. elegans at most of the stages in a dosage-dependent fashion. Upon treatment with 30 mM caffeine, the majority ($86.1{\pm}3.4%$) of the L1 larvae were irreversibly arrested without further development. In contrast, many of the late-stage larvae survived and grew to adults when exposed to the same 30 mM caffeine. These results suggest that early-stage larvae are more susceptible to caffeine than later-stage larvae. To understand the metabolic responses to caffeine treatment, the levels of expression of cytochrome P450 (cyp) genes were examined with or without caffeine treatment using comparative microarray, and it was found that the expression of 24 cyp genes was increased by more than 2-fold (p < 0.05). Among them, induction of the cyp-35A gene family was the most prominent. Interestingly, depletion of the cyp-35A family genes one-by-one or in combination through RNA interference resulted in partial rescue from early larval developmental arrest caused by caffeine treatment, suggesting that the high-level induction of cyp-35A family genes can be fatal to the development of early-stage larvae.

Genetic Polymorphisms of Cytochrome P450 2C19 in Functional Dyspeptic Patients Treated with Cimetidine

  • Kim, Min-Hee;Kong, Eun-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.339-342
    • /
    • 2012
  • Inter-individual pharmacokinetic variation of H2-receptor antagonist is related to genetic polymorphism of CYP2C19. We investigated the frequency of CYP2C19 genetic polymorphism and the treatment duration of cimetidine by CYP2C19 genotypes in functional dyspeptic patients without definite causes who were treated with cimetidine in Korea. One hundred subjects with functional dyspepsia participated in this study from March 1, 2010 to June 30, 2011. They were tested by upper gastrointestinal endoscopy and treated for their dyspepsia with cimetidine. The single nucleotide polymorphisms (SNPs) of CYP2C19 were genotyped using the Seeplex CYP2C19 ACE Genotyping system. There were no significant differences in the demographic, clinical, or laboratory findings among the CYP2C19 subgroups which are wild type homozygote (W/W), heterozygote (W/V), and variant homozygote (V/V). The frequencies of CYP2C19 subgroups were 33 (33%) in W/W, 49 (49%) in W/V, and 18 (18%) in V/V, respectively. The mean duration of cimetidine treatment (in weeks) was the shortest in the V/V among the CYP2C19 genotypes (W/W: $5.1{\pm}1.5$, W/V: $4.0{\pm}1.7$, V/V: $2.1{\pm}0.7$; p<0.001). This study can also act as a basis for further investigation to identify the underlying genetic, epigenetic, or environmental factors in CYP2C19 enzyme activity.

A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity

  • Song, Min;Do, HyunHee;Kwon, Oh Kwang;Yang, Eun-Ju;Bae, Jong-Sup;Jeong, Tae Cheon;Song, Kyung-Sik;Lee, Sangkyu
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms ($IC_{50}$ values, $3.2-33.7{\mu}M$). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.

Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads (기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상)

  • Min Jeong Jeon;Je-Won Yoo;Young-Mi Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.104-114
    • /
    • 2023
  • As plastic usage increases globally, the amount of plastic waste entering the marine environment is steadily rising. Microplastics, in particular, can be ingested by marine organisms and accumulated in their digestive tracts, causing harmful effects on their growth and reproduction. Cytochrome P450 (CYP) enzymes are known to metabolize various environmental pollutants as detoxification enzymes, but their role in crustaceans is not well understood. In this study, sequences of nine CYP genes (CYP370A4, CYP370C5 from clan 2; CYP350A1, CYP350C5, CYP361A1 from clan 3; CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1 from clan 4) were analyzed using conserved domains in the brackish water flea Diaphanosoma celebensis. Additionally, after exposure to three different sizes of polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L) for 48 hours, the expression of these nine CYP genes were investigated using real-time reverse transcription polymerase chain reaction (RT-PCR). The results showed that all CYP genes possessed conserved motifs, indicating that D. celebensis CYP has evolutionarily conserved functions. Among these CYP genes, the expression of CYP370C5, CYP360A1, and CYP4C122 showed a significant increase after exposure to 0.05-㎛ PS beads, suggesting their involvement in PS metabolism. This research will contribute to understanding the molecular mode of actions of microplastics on marine invertebrates.

Effect of TSHAC on Human Cytochrome P450 Activity, and Transport Mediated by P-Glycoprotein

  • Im, Yelim;Kim, Yang-Weon;Song, Im-Sook;Joo, Jeongmin;Shin, Jung-Hoon;Wu, Zhexue;Lee, Hye Suk;Park, Ki Hun;Liu, Kwang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1659-1664
    • /
    • 2012
  • TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone] is a promising antitumorigenic chalcone compound, especially against TM4SF5 (four-transmembrane L6 family member 5)-mediated hepatocarcinoma. We evaluated the potential of TSAHC to inhibit the catalytic activities of nine cytochrome P450 isoforms and of P-glycoprotein (P-gp). The abilities of TSAHC to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The P-gp inhibitory effect of TSAHC was assessed by [$^3H$]digoxin accumulation in the LLCPK1-MDR1 cell system. TSAHC strongly inhibited CYP2C8, CYP2C9, and CYP2C19 isoform activities with $K_i$ values of 0.81, 0.076, and $3.45{\mu}M$, respectively. It also enhanced digoxin accumulation in a dose-dependent manner in the LLCPK1-MDR1 cells. These findings indicate that TSAHC has the potential to inhibit CYP2C isoforms and P-gp activities in vitro. TSAHC might be used as a nonspecific inhibitor of CYP2C isoforms based on its negligible inhibitory effect on other P450 isoforms such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, and CYP3A.

Effects of Hydroxyl Group Numbers on the B-Ring of 5,7-Dihydroxyflavones on the Differential Inhibition of Human CYP 1A and CYP1B1 Enzymes

  • Kim Hyun-Jung;Lee Sang Bum;Park Song-Kyu;Kim Hwan Mook;Park Young In;Dong Mi-Sook
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1114-1121
    • /
    • 2005
  • Flavonoids are polyphenols composed of two aromatic rings (A, B) and a heterocyclic ring (C). In order to determine the effects of the number of hydroxyl groups in the B-ring of the flavonoids on human cytochrome P450 (CYP) 1 family enzymes, we evaluated the inhibition of CYP1A-dependent 7-ethoxyresorufin O-deethylation activity by chrysin, apigenin and luteolin, using bacterial membranes that co-express human CYP1A1, CYP1A2, or CYP1B1 with human NADPH-cytochrome P450 reductase. Chrysin, which possesses no hydroxyl groups in its B-ring, exhibited the most pronounced inhibitory effects on CYP1A2-dependent EROD activity, followed by apigenin and luteolin. On the contrary, CYP1A1-mediated EROD activity was most potently inhibited by luteolin, which is characterized by two hydroxyl groups in its B-ring, followed by apigenin and chrysin. However, all of the 5,7-dihydroxyflavones were determined to similarly inhibit CYP1B1 activity. Chrysin, apigenin, and luteolin exhibited a mixed-type mode of inhibition with regard to CYP1A2, CYP1B1, and CYP1A1, with apparent Ki values of 2.4, 0.5, and 2.0 ${\mu}M$, respectively. These findings suggested that the number of hydroxyl groups in the B-ring of 5,7-dihydroxyflavone might have some influence on the degree to which CYP1A enzymes were inhibited, but not on the degree to which CYP1B1 enzymes were inhibited.

CYP2W1, CYP4F11 and CYP8A1 Polymorphisms and Interaction of CYP2W1 Genotypes with Risk Factors in Mexican Women with Breast Cancer

  • Cardenas-Rodriguez, N.;Lara-Padilla, E.;Bandala, C.;Lopez-Cruz, J.;Uscanga-Carmona, C.;Lucio-Monter, P.F.;Floriano-Sanchez, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.837-846
    • /
    • 2012
  • Breast cancer (BCa) is the leading type of cancer in Mexican women. Genetic factors, such as single nucleotide polymorphisms (SNP) of P450 system, have been reported in BCa. In this report, and for the first time in the literature, we analyzed the rs3735684 (7021 G>A), rs11553651 (15016 G>T) and rs56195291 (60020 C>G) polymorphisms in the CYP2W1, 4F11 and 8A1 genes in patients with BCa and in healthy Mexican women to identify a potential association between these polymorphisms and BCa risk. Patients and controls were used for polymorphism analysis using an allelic discrimination assay with TaqMan probes and confirmed by DNA sequencing. Links with clinic-pathological characteristics were also analyzed. Statistical analysis was performed using the standard ${\chi}^2$ or Fisher exact test statistic. No significant differences were observed in the distributions of CYP2W1 (OR 8.6, 95%CI 0.43-172.5 P>0.05; OR 2.0, 95%CI 0.76-5.4, P>0.05) and CYP4F11 (OR 0.3, 95%CI 0.01-8.4 P>0.05) genotypes between the patients and controls. Only the CYP8A1 CC genotype was detected in patients with BCa and the controls. All polymorphism frequencies were in Hardy-Weinberg Equilibrium (HWE) in the controls (P>0.05). We found a significant association between BCa risk and smoking, use of oral contraceptives or hormonal replacement therapy (HRT), obesity, hyperglycemia, chronic diseases, family history of cancer and menopausal status in the population studied (P<0.05). Tobacco, oral contraceptive or HRT, chronic diseases and obesity or overweight were strongly associated with almost eight, thirty-five, nine and five-fold increased risk for BCa. Tobaco, obesity and hyperglycemia significantly increased the risk of BCa in the patients carrying variant genotypes of CYP2W1 (P<0.05). These results indicate that the CYP2W1 rs3735684, CYP4F11 rs11553651 and CYP8A1 rs56195291 SNPs are not a key risk factor for BCa in Mexican women. This study did not detect an association between the CYP2W1, 4F11 and 8A1 genes polymorphisms and BCa risk in a Mexican population. However, some clinico-pathological risk factors interact with CYP2W1 genotypes and modifies susceptibility to BCa.