• Title/Summary/Keyword: CYP17A1

Search Result 68, Processing Time 0.026 seconds

CYP1A1, GSTM1, GSTT1 and TP53 Polymorphisms and Risk of Gallbladder Cancer in Bolivians

  • Sakai, Kazuaki;Loza, Ernesto;Roig, Guido Villa-Gomez;Nozaki, Ryoko;Asai, Takao;Ikoma, Toshikazu;Tsuchiya, Yasuo;Kiyohara, Chikako;Yamamoto, Masaharu;Nakamura, Kazutoshi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.781-784
    • /
    • 2016
  • The Plurinational State of Bolivia (Bolivia) has a high incidence rate of gallbladder cancer (GBC). However, the genetic and environmental risk factors for GBC development are not well understood. We aimed to assess whether or not cytochrome P450 (CYP1A1), glutathione S-transferase mu 1 (GSTM1), theta 1 (GSTT1) and tumor suppressor protein p53 (TP53) genetic polymorphisms modulate GBC susceptibility in Bolivians. This case-control study covered 32 patients with GBC and 86 healthy subjects. GBC was diagnosed on the basis of histological analysis of tissues at the Instituto de Gastroenterologia Boliviano-Japones (IGBJ); the healthy subjects were members of the staff at the IGBJ. Distributions of the CYP1A1 rs1048943 and TP53 rs1042522 polymorphisms were assayed using PCR-restriction fragment length polymorphism assay. GSTM1 and GSTT1 deletion polymorphisms were detected by a multiplex PCR assay. The frequency of the GSTM1 null genotype was significantly higher in GBC patients than in the healthy subjects (odds ratio [OR], 2.35; 95% confidence interval [CI], 1.03-5.37; age-adjusted OR, 3.53; 95% CI, 1.29-9.66; age- and sex-adjusted OR, 3.40; 95% CI, 1.24-9.34). No significant differences were observed in the frequencies of CYP1A1, GSTT1, or TP53 polymorphisms between the two groups. The GSTM1 null genotype was associated with increased GBC risk in Bolivians. Additional studies with larger control and case populations are warranted to confirm the association between the GSTM1 deletion polymorphism and GBC risk suggested in the present study.

Effects of Kaempferol, an Antioxidant, on the Bioavailability and Pharmacokinetics of Nimodipine in Rats

  • Park, Ji-Won;Choi, Jin-Seok;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.301-307
    • /
    • 2011
  • The aim of this study was to investigate the effects of kaempferol on the pharmacokinetics of nimodipine in rats. Nimodipine and kaempferol interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in kaempferol being taken concomitantly with nimodipine as a combination therapy to treat orprevent cardiovascular disease. The effect of kaempferol on P-gp and CYP3A4 activity was evaluated and Pharmacokinetic parameters of nimodipine were determined in rats after an oral (12 mg/kg) and intravenous (3 mg/kg) administration of nimodipine to rats in the presence and absence of kaempferol (0.5, 2.5, and 10 mg/kg). Kaempferol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $17.1{\mu}M$. In addition, kaempferol significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, the area under the plasma concentration-time curve ($AUC_{0-\infty}$) and the peak plasma concentration ($C_{max}$) of nimodipine significantly increased, respectively. Consequently, the absolute bioavailability of nimodipine in the presence of kaempferol (2.5 and 10 mg/kg) was 29.1-33.3%, which was significantly enhanced compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.30- to 1.49-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine was not affected by kaempferol in contrast to those of oral nimodipine. Kaempferol significantly enhanced the oral bioavailability of nimodipine, which might be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and /or in the liver and to inhibition of the P-gp efflux transporter in the small intestine by kaempferol. The increase in oral bioavailability of nimodipine in the presence of kaempferol should be taken into consideration of potential drug interactions between nimodipine and kaempferol.

The Effect of CYP2D6/3A5 Genotypes on Plasma Concentrations of Haloperidol after Adjunctive Treatment of Aripiprazole

  • Shim, Joo-Cheol;Ahn, Jung-Mi;Jung, Do-Un;Kong, Bo-Geum;Kang, Jae-Wook;Liu, Kwang-Hyeon;Shin, Jae-Gook
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • Objectives To evaluate the drug interactions between aripiprazole and haloperidol, authors investigated plasma concentrations of those drugs by genotypes. Method Fifty six patients with a confirmed Diagnostic and Statistical Manual of Mental Disorders 4th edition diagnosis of schizophrenia were enrolled in this eight-week, double blind, placebo-controlled study. Twenty-eight patients received adjunctive aripiprazole treatment and twenty-eight patients received placebo while being maintained on haloperidol treatment. Aripiprazole was dosed at 15 mg/day for the first 4 weeks, and then 30 mg for the next 4 weeks. The haloperidol dose remained fixed throughout the study. Plasma concentrations of haloperidol and aripiprazole were measured by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, week 1, 2, 4 and 8. $^*1$, $^*5$, and $^*10$ B alleles of CYP2D6 and $^*1$ and $^*3$ alleles of CYP3A5 were determined. The Student's T-test, Pearson's Chi-square test, Wilcoxon Rank Sum test and Logistic Regression analysis were used for data analysis. All tests were two-tailed and significance was defined as an alpha < 0.05. Results In the frequency of CYP2D6 genotype, $^*1/^*10$ B type was most frequent (36.5%) and $^*1/^*1$ (30.8%), $^*10B/^*10B$ (17.3%) types followed. In the frequency of CYP3A5 genotype, $^*3/^*3$ type was found in 63.5% of subjects, and $^*1/^*3$ type and $^*1/^*1$ were 30.8% and 5.8% respectively. The plasma levels of haloperidol and its metabolites did not demonstrate significant time effects and time-group interactions after adjunctive treatment of aripiprazole. The genotypes of CYP2D6 and 3A5 did not affect the plasma concentration of haloperidol in this trial. No serious adverse event was found after adding aripiprazole to haloperidol. Conclusion No significant drug interaction was found between haloperidol and aripiprazole. Genotypes of CYP2D6 and 3A5 did not affect the concentration of haloperidol after adding aripiprazole.

Effects of Hydrocortisone on the Pharmacokinetics of Loratadine after Oral and Intravenous Loratadine Administration to Rats

  • Choi, Jun-Shik;Choi, In;Burm, Jin-Pil
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.205-210
    • /
    • 2009
  • The present study investigated the effects of hydrocortisone on the pharmacokinetics of loratadine in rats after intravenous and oral administration. A single dose of loratadine was administered either orally (4 mg/kg) or intravenously (1 mg/kg) with or without oral hydrocortisone (0.3 or 1.0 mg/kg). Compared to the control group (without hydrocortisone), after oral administration of loratadine, the area under the plasma concentration-time curve (AUC) was significantly increased by 30.2-81.7% in the presence of hydrocortisone (p<0.05). The peak plasma concentration ($C_{max}$) was significantly increased by 68.4% in the presence of 1.0 mg/kg hydrocortisone after oral administration of loratadine (p<0.05). Hydrocortisone (1.0 mg/kg) significantly increased the terminal plasma half-life ($t_{1/2}$) of loratadine by 20.8% (p<0.05). Consequently, the relative bioavailability of loratadine was increased by 1.30- to 1.82-fold. In contrast, oral hydrocortisone had no effects on any pharmacokinetic parameters of loratadine given intravenously. This suggests that hydrocortisone may improve the oral bioavailability of loratadine by reducing first-pass metabolism of loratadine, most likely mediated by P-gp and/or CYP3A4 in the intestine and/or liver. In conclusion, hydrocortisone significantly enhanced the bioavailability of orally administered loratadine in rats, which may have been due to inhibition of both CYP 3A4-mediated metabolism and P-gp in the intestine and/or liver by the presence of hydrocortisone.

Effects of Atorvastatin on the Pharmacokinetics of Nicardipine after Oral and Intravenous Administration in Rats

  • Choi, Jun-Shik;Ha, Sung-Il;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.226-232
    • /
    • 2010
  • The aim of this study was to investigate the effect of atrovasatatin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine to rats. Nicardipine was administered orally (12 mg/kg) or intravenously (i.v., 4 mg/kg) without or with oral administration of atrovasatatin (0.3 or 1.0 mg/kg) to rats. The effect of atorvastatin on the P-glycoprotein (P-gp) as well as CYP3A4 activity was also evaluated. Atorvastatin inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 48 ${\mu}M$. Compared to the controls (nicardipine alone), the area under the plasma concentration-time curve (AUC) of nicardipine was significantly (1.0 mg/kg, p<0.05) greater by 16.8-45.4%, and the peak plasma concentration ($C_{max}$) was significantly (1.0 mg/kg, p<0.05) higher by 28.0% after oral administration of nicardipine with atorvastatin, respectively. Consequently, the relative bioavailability (R.B.) of nicardipine was increased by 1.17- to 1.45-fold and the absolute bioavailability (A.B.) of nicardipine with atrovasatatin was significantly greater by 16.7-20.9% compared to that of the controls (14.3%). Compared to the i.v. control, atrovasatatin did not significantly change pharmacokinetic parameters of i.v. administration nicardipine. The enhanced oral bioavailability of nicardipine by atorvastatin suggests that CYP3A subfamily-mediated metabolism were inhibited in the intestine and/or in the liver rather than P-gp-mediated efflux of nicardipine. Based on these results, modification of nicardipine of dosage regimen is required in the patients. Human studies are required to prove the above hypothesis.

Therapeutic Effects and Adverse Drug Reactions are Affected by Icotinib Exposure and CYP2C19 and EGFR Genotypes in Chinese Non-Small Cell Lung Cancer Patients

  • Chen, Jia;Zheng, Xin;Liu, Dong-Yang;Zhao, Qian;Wu, Yi-Wen;Tan, Fen-Lai;Wang, Yin-Xiang;Jiang, Ji;Hu, Pei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7195-7200
    • /
    • 2014
  • Background: The aim of this study was to evaluate how CYP2C19 affects icotinib and metabolite' exposure, and to determine whether the exposure and EGFR genotype influences survival time, tumor metastasis and adverse drug reactions. Materials and Methods: 274 NSCLC patients who accepted 125mg icotinib/t.i.d. were chosen from a phase III study. Blood samples were obtained in $672^{nd}$ ($4^{th}$ week) and $1,680^{th}$ hours ($10^{th}$ week), and plasma was used to quantify the concentration of icotinib and blood cells were sampled to check the genotypes. Clinical data were also collected at the same time, including EGFR genotypes. Plasma concentrations were assessed by HPLC-MS/MS and genotype by sequencing. All data were analyzed through SPSS 17.0 and SAS 9.2. Results: CYP 2C19 genotypes affected bio-transformation from icotinib to M24 and M26, especially in poor-metabolisers. Higher icotinib concentrations (>1000 ng/mL) not only increased patient PFS and OS but also reduced tumor metastasis. Patients with mutant EGFR experienced a higher median PFS and OS (234 and 627 days), especially those with the 19del genotype demonstrating higher PR ratio. Patients who suffered grade II skin toxicity had a higher icotinib exposure than those with grade I skin toxicity or no adverse effects. Liver toxic reactions might occur in patients with greater M20 and M23 plasma concentrations. Conclusions: CYP2C19 polymorphisms significantly affect icotinib, M24 and M26 exposure. Patients with mutant EGFR genotype and higher icotinib concentration might have increased PFS and OS and lower tumor metastasis. Liver ADR events and serious skin effects might be respectively induced by greater M20, M23 and icotinib concentrations.

Effect of Lipopolysaccharide (LPS) Exposure on the Reproductive Organs of Immature Female Rats

  • Yoo, Da Kyung;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • Lipopolysaccharide (LPS), an endotoxin, elicits strong immune responses in mammals. Several lines of evidence demonstrate that LPS challenge profoundly affects female reproductive function. For example, LPS exposure affects steroidogenesis and folliculogenesis, resulting in delayed puberty onset. The present study was conducted to clarify the mechanism underlying the adverse effect of LPS on the delayed puberty in female rats. LPS was daily injected for 5 days ($50{\mu}g/kg$, PND 25-29) to treated animals and the date at VO was evaluated through daily visual examination. At PND 39, animals were sacrificed, and the tissues were immediately removed and weighed. Among the reproductive organs, the weights of the ovaries and oviduct from LPS-treated animals were significantly lower than those of control animals. There were no changes in the weights of uterus and vagina between the LPS-treated and their control animals. immunological challenge by LPS delayed VO. Multiple corpora lutea were found in the control ovaries, indicating ovulations were occurred. However, none of corpus luteum was present in the LPS-treated ovary. The transcription level of steroidogenic acute regulatory protein (StAR), CYP11A1, CYP17A1 and CYP19 were significantly increased by LPS treatment. On the other hand, the levels of $3{\beta}$-HSD, $17{\beta}$-HSD and LH receptor were not changed by LPS challenge. In conclusion, the present study demonstrated that the repeated LPS exposure during the prepubertal period could induce multiple alterations in the steroidogenic machinery in ovary, and in turn, delayed puberty onset. The prepubertal LPS challenge model used in our study is useful to understand the reciprocal regulation of immune (stress) - reproductive function in early life.

The Study of Free Radical Scavenging Effect of Lycii Fructus by Liver Injury of Rats (백서 간손상에 의한 구기자의 유리자유기 소거능에 관한 연구)

  • Yoon Sang Ju;Jung Sun Yeong;Kim Young Mi;Ha Ki Tae;Kim Cheorl Ho;Kim Dong Wook;Kim June Ki;Choi Dall Yeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.91-100
    • /
    • 2003
  • In the present study, we investigated the protective effect of the Lycii Fructus water extracts (LFE) against CCl4-induced hepatotoxicity and the mechanism underlying these protective effects in the rats. The pretreatment of LFE has shown to possess a significant protective effect by lowering the serum alanine and aspartate aminoteansferase (AST and ALT) and alkaline phosphatase (ALP). This hepatoprotective action was confirmed by histological observation, In addition, the pretreatment of LFE prevented the elevation of hepatic malondialdehyde (MDA) formation and the depletion of reduced glutathione (GSH) content and catalase activity in the liver of CC1₄-injected rats. The LFE also displayed hydroxide radical scavenging activity in a dose-dependent manner (IC50 = 83.6 μg/ml), as assayed by electron spin resonance (ESR) spin-trapping technique. Moreover, the expression of cytochrome P450 2E1 (CYP2E1) mRNA, as measured by reverse transcriptase-polymerase chain reaction (RT-PCR), was significantly decreased in the liver of LFE-pretreated rats when compared with that in the liver of control group. Based on these results, it was suggested that the hepatoprotective effects of the LFE may be related to antioxidant effects and regulation of CYP2E1 gene expression.

The Study of Protective Effect of Puerariae Radix against $CC1_4$-induced Hepatotoxicity ($CC1_4$로 유발된 백서의 간손상에 대한 갈근의 간보호작용 연구)

  • Hyun Dong Hwan;Jung Sun Yeong;Jung Sang Shin;Ha Ki Tae;Kim Cheorl Ho;Kim Dong Wook;Kim June Ki;Choi Dall Yeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.297-307
    • /
    • 2003
  • In the present study, we investigated the protective effect of the Puerarie Radix water extract (PRE) against CCl₄-induced hepatotoxicity and the mechanism underlying these protective effects in the rats. The pretreatment of PRE has shown to possess a significant protective effect by lowering the serum alanine and aspartate aminoteansferase (AST and ALT) and alkaline phosphatase (ALP). This hepatoprotective action was confirmed by histological observation. In addition, the pretreatment of PRE prevented the elevation of hepatic malondialdehyde (MDA) formation and the depletion of reduced glutathione (GSH) content and catalase activity in the liver of CC1₄-injected rats. The PRE also displayed hydroxide radical scavenging activity in a dose-dependent manner (IC50 = 83.6 μg/ml), as assayed by electron spin resonance (ESR) spin-trapping technique. Moreover, the expression of cytochrome P450 2E1 (CYP2E1) mRNA, as measured by reverse transcriptase-polymerase chain reaction (RT-PCR), was significantly decreased in the liver of PRE-pretreated rats when compared with that in the liver of control group. Based on these results, it was suggested that the hepatoprotective effects of the PRE may be related to antioxidant effects and regulation of CYP2E1 gene expression.

Pharmacokinetic Interaction Between Diltiazem and Atorvastatin in Rats (흰쥐에서 아톨바스타틴과 딜티아젬의 약물동태학적 상호작용)

  • Chung, Joong-Hwa;Kim, Hyun-Yong;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.17 no.1
    • /
    • pp.33-37
    • /
    • 2007
  • The purpose of this study was to investigate the effect of atorvastatin on the pharmacokinetics of diltiazem (15 mg/kg) after oral administration of diltiazem with or without atorvastatin (0.5, 1.5 and 3.0 mg/kg) in rats. Coadministration of atorvastatin increased significantly (p<0.05, 3.0 mg/kg) the plasma concentration-time curve (AUC) and the peak concentration $(C_{max})$ of diltiazem compared to the control group. The total plasma clearance (CL/F) of diltiazem was decreased significantly (p<0.05, 3.0 mg/kg) compared to the control group. The relative bioavailability (RB%) of diltiazem was increased from 1.14- to 1.49-fold. Coadministration of atorvastatin did not significantly change the elimination rate constant $(K_{el})$, terminal half-life $(T_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of diltiazem. Based on these results, we can make a conclusion that the significant changes of these pharmacokinetic parameters might be due to atorvastatin, which possesses the potency to inhibit the metabolizing enzyme (CYP3A4) in the liver and intestinal mucosa, and also inhibit the P-glycoprotein (P-gp) efflux pump in the intestinal mucosa.

  • PDF