• Title/Summary/Keyword: CYP1 enzymes

Search Result 140, Processing Time 0.029 seconds

Association of CYP39A1, RUNX2 and Oxidized Alpha-1 Antitrypsin Expression in Relation to Cholangiocarcinoma Progression

  • Khenjanta, Chakkaphan;Thanan, Raynoo;Jusakul, Apinya;Techasen, Anchalee;Jamnongkan, Wassana;Namwat, Nisana;Loilome, Watcharin;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10187-10192
    • /
    • 2015
  • Cytochrome P450 (CYP) enzymes are a large family of constitutive and inducible mono-oxygenase enzymes that play a central role in the oxidative metabolism of both xenobiotic and endogenous compounds. Several CYPs are involved in metabolism of oxysterols, which are cholesterol oxidation products whose expression may be dysregulated in inflammation-related diseases including cancer. This study focused on CYP39A1, which can metabolize 24-hydroxycholesterol (24-OH) that plays important roles in the inflammatory response and oxidative stress. We aimed to investigate the expression status of CYP39A1 and its transcription factor (RUNX2) in relation to clinical significance in cholangiocarcinoma (CCAs) and to determine whether 24-OH could induce oxidative stress in CCA cell lines. Immunohistochemistry showed that 70% and 30% of CCA patients had low and high expression of CYP39A1, respectively. Low expression of CYP39A1 demonstrated a significant correlation with metastasis. Our results also revealed that the expression of RUNX2 had a positive correlation with CYP39A1. Low expression of both CYP39A1 (70%) and RUNX2 (37%) was significantly related with poor prognosis of CCA patients. Interestingly, oxidized alpha-1 antitrypsin (ox-A1AT), an oxidative stress marker, was significantly increased in CCA tissues in which CYP39A1 and RUNX2 were down regulated. Additionally, immunocytochemistry showed that 24-OH could induce ox-A1AT in CCA cell lines. In conclusion, our study revealed putative roles of the CYP39A1 enzyme in prognostic determination of CCAs.

Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads (기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상)

  • Min Jeong Jeon;Je-Won Yoo;Young-Mi Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.104-114
    • /
    • 2023
  • As plastic usage increases globally, the amount of plastic waste entering the marine environment is steadily rising. Microplastics, in particular, can be ingested by marine organisms and accumulated in their digestive tracts, causing harmful effects on their growth and reproduction. Cytochrome P450 (CYP) enzymes are known to metabolize various environmental pollutants as detoxification enzymes, but their role in crustaceans is not well understood. In this study, sequences of nine CYP genes (CYP370A4, CYP370C5 from clan 2; CYP350A1, CYP350C5, CYP361A1 from clan 3; CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1 from clan 4) were analyzed using conserved domains in the brackish water flea Diaphanosoma celebensis. Additionally, after exposure to three different sizes of polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L) for 48 hours, the expression of these nine CYP genes were investigated using real-time reverse transcription polymerase chain reaction (RT-PCR). The results showed that all CYP genes possessed conserved motifs, indicating that D. celebensis CYP has evolutionarily conserved functions. Among these CYP genes, the expression of CYP370C5, CYP360A1, and CYP4C122 showed a significant increase after exposure to 0.05-㎛ PS beads, suggesting their involvement in PS metabolism. This research will contribute to understanding the molecular mode of actions of microplastics on marine invertebrates.

Molecular Cloning and Characterization of Bovine CYP26A1 Promoter (소 CYP26A1 유전자 프로모터의 molecular cloning 및 특성)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • The retinoic acid (RA) plays an important role in the growth and development of many cells, and bioactive RA concentration is regulated by several enzymes, including CYP26A1. The expression of the CYP26A1 gene is regulated by RA, and the CYP26A1 gene is one of the candidates for RA-responsive genes. Although CYP26A1 genes are cloned from several animals, cloning of the CYP26A1 gene from cows has not been reported yet. The promoter region of CYP26A1 from cows was cloned by PCR and analyzed by sequence alignment with human and mouse CYP26A1. The RA-responsive element (RARE), DR-5 (ttggg), was located in this region and was perfectly conserved. The promoter region of bovine CYP26A1, which contains DR-5, was ligated to the luciferase reporter gene on transient transfection assays. The expression of CYP26A1-Luc promoter was activated by ATRA treatment in lung-derived mtCC cells. Co-transfection with RAR-α or -β with ATRA significantly activates the expression of CYP26A1-Luc promoter; however, it was less effective with either RAR-γ or RXR-γ. In addition, the endogenous gene expressions measured by Q-RT-PCR in mtCC cells were not significantly affected by ATRA treatment for 2 days; however, the expression of the endogenous CYP26A1 gene was diminished sharply at day 3 with ATRA treatment. In conclusion, the promoter region of bovine CYP26A1 contains conserved DR-5 RARE, which functions as a binding site for RAR-α or -β, and it is involved in the regulation of CYP26A1 gene expression and the control of RA signaling in mtCC cells.

Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers

  • Kim, Dal-Sik;Kim, Yunjeong;Jeon, Ji-Young;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.375-381
    • /
    • 2016
  • Background: We evaluated the drug interaction profile of Red Ginseng (RG) with respect to the activities of major cytochrome P450 (CYP) enzymes and the drug transporter P-glycoprotein (P-gp) in healthy Korean volunteers. Methods: This article describes an open-label, crossover study. CYP probe cocktail drugs, caffeine, losartan, dextromethorphan, omeprazole, midazolam, and fexofenadine were administered before and after RG supplementation for 2 wk. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data using analysis of variance after RG administration versus before RG administration. Results: Fourteen healthy male participants were evaluated, none of whom were genetically defined as poor CYP2C9, 2C19, and CYP2D6 metabolizers based on genotyping. Before and after RG administration, the geometric least-square mean metabolic ratio (90% CI) was 0.870 (0.805-0.940) for caffeine to paraxanthine (CYP1A2), 0.871 (0.800-0.947) for losartan (CYP2C9) to EXP3174, 1.027 (0.938-1.123) for omeprazole (CYP2C19) to 5-hydroxyomeprazole, 1.373 (0.864-2.180) for dextromethorphan to dextrorphan (CYP2D6), and 0.824 (0.658-1.032) for midazolam (CYP3A4) to 1-hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time ($AUC_{last}$) for fexofenadine (P-gp) was 0.963 (0.845-1.098). Administration of concentrated RG for 2 wk weakly inhibited CYP2C9 and CYP3A4 and weakly induced CYP2D6. However, no clinically significant drug interactions were observed between RG and CYP and P-gp probe substrates. Conclusion: RG has no relevant potential to cause CYP enzyme- or P-gp-related interactions.

A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity

  • Song, Min;Do, HyunHee;Kwon, Oh Kwang;Yang, Eun-Ju;Bae, Jong-Sup;Jeong, Tae Cheon;Song, Kyung-Sik;Lee, Sangkyu
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms ($IC_{50}$ values, $3.2-33.7{\mu}M$). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.

Inhibition of 7-Alkoxyresorufin O-Dealkylation Activities of Recombinant Human CYP1A1 and CYP1B1 by Resveratrol

  • Dong, Mi-Sook;Chang, Suk-Kyung;Kim, Hyun-Jung;F. Peter Guengerich;Park, Young-In
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2002
  • Resveratrol is known to have potent cancer chemopreventive activity against tumorigenesis caused by 7,12-dimetylbenz[$\alpha$]anthracene(DMBA) which is known to be oxidized to reactive products by cytochrome P450 1B1 (CYP1B1). The effects of resveratrol on the activity of recombinant human P450 1 family enzymes, expressed in Escherichia coli membranes with human NADPH-P450 reductase, were determined by measuring alkoxyresorufin O-dealkylation activity, e.g., ethoxyresorufin O-deethylation (EROD) CYP1A1, methoxyresorufin O-demethylation (MROD), CYP1A2, benzyloxyresorufin-O-debenzylation (BROD), CTP1B1. Resveratrol inhibited CYP1B1 and CYP1A1 activities in a dose-dependent manner with $IC_{50}$/ values of 59 and 10$\mu$M for EROD activity and 1.8 and 30$\mu$M for BROD activity, respectively. Resveratrol had only weak inhibitory effect on CYP1A2 activity ($IC_{50}$/ values of 0.44 mM for EROD and >2 mM for MROD). Furthermore, resveratrol did not affect NADPH-P450 reductase activity significantly. Resveratrol inhibited the CYP1B1-dependent EROD activity with a $K_{i}$ of 28 $\mu$M in a non-competitive type manner. these results suggest that resveratrol-derived inhibited of CYP1B1 and CYP1A1 activities may contribute to the suppression of DMBA inducible tumorigenesis observed in extrahepatic tissues.s.

  • PDF

Isolation of 5'-Untranslational Region of Trout Cyp1A1 Gene

  • Roh, Yong-Nam;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.450-455
    • /
    • 1996
  • The genomic DNA was prepared from trout liver which was treated with 3-methycholanthrene, and cloned into lambda EMBL3 at BamHl site. The genomic library was constructed via infections of these recombinant phages into E. coli K802, and screened by the most $5^I$-portion of trout CYP1A1 cDNA. After the screening of $10^9$ clones of the amplified library, 12 positive clones were isolated, and subjected to further screenings. The results of southern blot hybridization of genomic DNA prepared from the positive clone showed the presence of a single gene of CYP1A1, and 3.5 Kb PstI fragment that hybridizes with the most $5^I$-region DNA of CYP1A1 cDNA. The restriction map of PstI fragment was determined by the restriction digestion with various enzymes. The nucleotide sequence of the upstream genomic DNA of CYPIAI was determined by DNA sequencing of exonuclease III unidirectionally deleted PstI fragment DNA using $[^{35}/S]$dATP. This paper presented the upstream genomic DNA of CYP1A1 contained a part of coding region which was about 351 base pairs (from ATG to PstI site at 3563).

  • PDF

Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl4-Induced Liver Injury in Sprague-Dawley Rats

  • Byun, Jae-Hyuk;Kim, Jun;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.218-223
    • /
    • 2018
  • The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride ($CCl_4$)-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of $CCl_4$ (1.5 ml/kg, twice a week for 14 days). The administration of $CCl_4$ exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2'-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to $CCl_4$ induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in $CCl_4$ induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by $CCl_4$ via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Polymorphisms of Cytochrome P450 2E1 Gene in Korean Patients with Renal Failure

  • Yoo, Min
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.310-314
    • /
    • 2013
  • CYP2E1 in the liver has been studied intensively because it is involved in the metabolic activation of xenobiotics. It is inducible by alcohol, so it has been suspected as the cause of cancer in the stomach and lung. The possible role of CYP2E1 has been suggested strongly as causing tissue damage in mice with renal failure. It was also suspected that 5'-flanking region of CYP2E1 gene might be involved with renal failure. So, we investigated polymorphism of restriction enzyme sites within CYP2E1 gene using the PCR-RFLP analysis. PstI and RsaI sites were located at 5'-flanking region and DraI site was located at intron 6. All three types (W/W, W/S, S/S) were observed for these enzymes although each incidence was somewhat different depending the enzyme sites. W/W was prominent for PstI whereas W/S was markedly high for RsaI. Overall, polymorphic incidence in patients was somewhat higher than normal population. This research should facilitate further investigation of CYP2E1 at genetic level as the direct cause of tissue damage in various organs.