• Title/Summary/Keyword: CYP1 enzymes

Search Result 140, Processing Time 0.029 seconds

Protective Effect of Dandelion Extracts on Ethanol-Induced Acute Hepatotoxicity in C57BL/6 Mice

  • Liu, Xiao-Yu;Ma, Jie;Park, Chung-Mu;Chang, Hee-Kyung;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Dandelion (Taraxacum officinale) has been widely used as an anti-inflammatory agent in oriental medicine. In the current study, we investigated the protective effect, and the possible mechanism, of dandelion extracts against ethanol-induced acute hepatotoxicity in C57BL/6 mice. Dandelion water and ethanol extract was administered at 2 g/kg body weight (BW) once daily for 7 consecutive days, whereas control and ethanol groups received water by gavage. Ethanol (50% ethanol; 6 g/kg BW) was administered 12 hr before sacrificing the mice in order to generate liver injury. Significantly increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as liver triglyceride (TG) and cholesterol levels were attenuated by dandelion supplementation. In addition, dandelion extracts not only enhanced alcohol dehydrogenase (ADH) and anti-oxidative enzyme activities, but reduced lipid peroxidation. Cytochrome P450 2E1 (CYP 2E1), one of the critical enzymes xenobiotic metabolism, expression was lower with ethanol treatment but restored by dandelion supplementation. These results were confirmed by improved histopathological changes in fatty liver and hepatic lesions induced by ethanol. In conclusion, dandelion could protect liver against ethanol administration by attenuating of oxidative stress and inflammatory responses.

In vitro metabolism of a new protective agent, KR-31543 in human liver microsomes

  • Ji, Hye-Young;Kim, Sook-Jin;Lee, Hong-Il;Lee, Seung-Seok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.286.2-287
    • /
    • 2003
  • The purpose of this paper was to identify the metabolic pathway of a new neuroprotective agent, KR-31543 for ischemia-reperfusion damage in human liver microsomes and characterize cytochrome P450 (CYP) enzymes involved in the in vitro metabolism of KR-31543 generates two metabolites in human liver microsomes : M1, N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine and M2, hydroxy-KR-31543. (omitted)

  • PDF

Protective effects of Erythronium japonicum and Corylopsis coreana Uyeki extracts against 1,3-dichloro-2-propanol-induced hepatotoxicity in rats

  • Seunghyun Kim;Hee-Ock Boo;Taeho Ahn;Chun-Sik Bae
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.29.1-29.6
    • /
    • 2020
  • Erythronium japonicum (E. japonicum) and Corylopsis coreana Uyeki (C. coreana Uyeki, Korean winter hazel) have been shown to significantly decrease 1,3-dichloro-2-propanol (1,3-DCP)-induced generation of reactive oxygen species and CYP2E1 activity in HuH7, human hepatocytes. In this study, we expanded upon the previous study and investigated the effects of E. japonicum and C. coreana Uyeki extracts on 1,3-DCP-induced liver damage in rats. The pre-treatment of rats with these extracts alleviated a decrease in body weight and reduced 1,3-DCP-induced increase in catalytic activities of hepatic enzymes, such as aspartate aminotransferase and alanine aminotransferase, in the serum. Moreover, treatment with the extracts restored the 1,3-DCP-induced decreases in anti-oxidant enzyme activities, such as the activities of superoxide dismutase and catalase, in the rat liver. Histopathological studies also strongly supported the results of enzyme activities. These results suggest a possibility that the extracts of E. japonicum and C. coreana Uyeki can be a remedy for alleviating 1,3-DCP-induced liver damage in animals.

Suppressive Effects of Defatted Green Tea Seed Ethanol Extract on Cancer Cell Proliferation in HepG2 Cells (HepG2 Cell에서 녹차씨박 에탄올 추출물의 암세포 증식 억제효과)

  • Noh, Kyung-Hee;Min, Kwan-Hee;Seo, Bo-Young;Kim, Hye-Ok;Kim, So-Hee;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • Defatted green tea seed was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether, ethyl acetate and butanol. The ethanol and butanol extracts showed greater increases in antiproliferation potential against liver cancer cells than petroleum ether, ethyl acetate, $H_2O$, and hot water extracts did. Thus, this study was carried out to investigate the anti-proliferative actions of defatted green tea seed ethanol extract (DGTSE) in HepG2 cancer cells. The DGTSE contained catechins including EGC ($1039.1{\pm}15.2\;g/g$), tannic acid ($683.5{\pm}17.61\;{\mu}g/g$), EC ($62.4{\pm}5.00\;{\mu}g/g$), ECG ($24.4{\pm}7.81\;{\mu}g/g$), EGCG ($20.9{\pm}0.96\;{\mu}g/g$) and gallic acid ($2.4{\pm}0.68\;{\mu}g/g$), but caffeic acid was not detected when analyzed by HPLC. The anti-proliferation effect of DGTSE toward HepG2 cells was 83.13% when treated at $10\;{\mu}g$/mL, of DGTSE, offering an $IC_{50}$ of $6.58\;{\mu}g$/mL. DGTSE decreased CYP1A1 and CYP1A2 protein expressions in a dose-dependent manner. Quinone reductase and antioxidant response element (ARE)-luciferase activities were increased about 2.6 and 1.94-fold at a concentration of $20\;{\mu}g$/mL compared to a control group, respectively. Enhancement of phase II enzyme activity by DGTSE was shown to be mediated via interaction with ARE sequences in genes encoding the phase enzymes. DGTSE significantly (p<0.05) suppressed prostaglandin $E_2$ level, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) protein expressions, and NF${\kappa}$B translocation, but did not affected nitric oxide production. From the above results, it is concluded that DGTSE may ameliorate tumor and inflammatory reactions through the elevation of phase II enzyme activities and suppression of NF${\kappa}$B translocation and TNF-${\alpha}$ protein expressions, which support the cancer cell anti-proliferative effects of DGTSE in HepG2 cells.

Molecular Mechanism of Tetrabromobisphenol A (TBBPA)-induced Target Organ Toxicity in Sprague-Dawley Male Rats

  • Choi, Jae-Seok;Lee, Young-Jun;Kim, Tae-Hyung;Lim, Hyun-Jung;Ahn, Mee-Young;Kwack, Seung-Jun;Kang, Tae-Seok;Park, Kui-Lea;Lee, Jae-Won;Kim, Nam-Deuk;Jeong, Tae-Cheon;Kim, Sang-Geum;Jeong, Hye-Gwang;Lee, Byung-Mu;Kim, Hyung-Sik
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.61-70
    • /
    • 2011
  • Brominated flame retardants (BFRs) are present in many consumer products ranging from fabrics to plastics and electronics. Wide use of flame retardants can pose an environmental hazard, which makes it important to determine the mechanism of their toxicity. In the present study, dose-dependent toxicity of tetrabromobisphenol A (TBBPA), a flame retardant, was examined in male prepubertal rats (postnatal day 18) treated orally with TBBPA at 0, 125, 250 or 500 mg/kg for 30 days. There were no differences in body weight gain between the control and TBBPA-treated groups. However, absolute and relative liver weights were significantly increased in high dose of TBBPA-treated groups. TBBPA treatment led to significant induction of CYP2B1 and constitutive androstane receptor (CAR) expression in the liver. In addition, serum thyroxin (T4) concentration was significantly reduced in the TBBPA treated group. These results indicate that repeated exposure to TBBPA induces drug-metabolising enzymes in rats through the CAR signaling pathway. In particular, TBBPA efficiently produced reactive oxygen species (ROS) through CYP2B1 induction in rats. We measured 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage, in the kidney, liver and testes of rats following TBBPA treatment. As expected, TBBPA strongly induced the production of 8-OHdG in the testis and kidney. These observations suggest that TBBPA-induced target organ toxicity may be due to ROS produced by metabolism of TBBPA in Sprague-Dawley rats.

Comparison of chlorpyrifos resistance in Culex pipiens pipiens (Diptera: Culicidae) collected from Northern and Southern Tunisia

  • DAABOUB, Jabeur;TABBABI, Ahmed;BEN CHEIKH, Raja;LAAMARI, Ali;FERIANI, Mohamed;BOUBAKER, Chokri;BEN JHA, Ibtissem;BEN CHEIKH, Hassen
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.400-404
    • /
    • 2018
  • In this study, we investigated resistance to the organophosphates chlorpyrifos in Tunisian populations of Culex pipiens pipiens. Three field populations were collected from Northern and central Tunisia between 2003 and 2005 and used for the bioassays tests. Our results registered moderate and high levels of resistance to chlorpyrifos which ranged from 33.8 to 111. The chlorpyrifos resistant populations were highly resistant to propoxur indicated an insensitive acetylcholinesterase 1 (AChE 1). The highest frequency of AChE 1 resistant phenotypes (64%) was recorded in the most resistant population (sample # 1). Bioassays conducted in the presence of synergists showed that not esterases were involved as the resistance mechanism to chlorpyrifos. However, CYP450 was partly involved in the resistance of the most resistant sample (# 1). Starch electrophoresis showed that three esterases were present in studied samples: A2-B2, A4-B4 and B12. Results are discussed in relation to the selection pressure caused by insecticide treatments.

Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag

  • Park, Hyoung-Goo;Lim, Young-Ran;Han, Songhee;Jeong, Dabin;Kim, Donghak
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.983-989
    • /
    • 2017
  • NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of $NADP^+$ in the affinity chromatography process. In the present study, the rat NPR clone containing a $6{\times}$ Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using $Ni^{2+}$-affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

Venlafaxine-Induced Acute Toxic Hepatitis (Venlafaxine에 의한 급성 독성 간염 1예)

  • Na, Kyeong-Sae;Hwang, Hee-Sung;Kim, Shin-Gyeom;Lee, So-Young-Irene;Jung, Han-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.3
    • /
    • pp.159-162
    • /
    • 2011
  • Venlafaxine is among the most widely prescribed antidepressants. It is extensively metabolized to O-desmethylvenlafaxine via cytochrome P450 (CYP) 2D6. We report a case of acute toxic hepatitis resulting from venlafaxine in a 54-year-old woman with pain disorder. During venlafaxine treatment, laboratory tests revealed elevated liver enzymes with a maximum of 169 IU/L for aspartate transaminase (AST) and 166 IU/L for alanine transaminase (ALT). AST and ALT levels returned to normal after 6 days of discontinuation of venlafaxine. The patient was finally diagnosed with acute toxic hepatitis through liver biopsy. This case indicates the importance that clinicians should be aware of the hepatotoxicity of venlafaxine in practice.

A case of 17 alpha-hydroxylase deficiency

  • Kim, Sung Mee;Rhee, Jeong Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.72-76
    • /
    • 2015
  • $17{\alpha}$-hydroxylase and 17,20-lyase are enzymes encoded by the CYP17A1 gene and are required for the synthesis of sex steroids and cortisol. In $17{\alpha}$-hydroxylase deficiency, there are low blood levels of estrogens, androgens, and cortisol, and resultant compensatory increases in adrenocorticotrophic hormone that stimulate the production of 11-deoxycorticosterone and corticosterone. In turn, the excessive levels of mineralocorticoids lead to volume expansion and hypertension. Females with $17{\alpha}$-hydroxylase deficiency are characterized by primary amenorrhea and delayed puberty, with accompanying hypertension. Affected males usually have female external genitalia, a blind vagina, and intra-abdominal testes. The treatment of this disorder is centered on glucocorticoid and sex steroid replacement. In patients with $17{\alpha}$-hydroxylase deficiency who are being raised as females, estrogen should be supplemented, while genetically female patients with a uterus should also receive progesterone supplementation. Here, we report a case of a 21-year-old female with $17{\alpha}$-hydroxylase deficiency who had received inadequate treatment for a prolonged period of time. We also include a brief review of the recent literature on this disorder.

Naturally-Occurring Glucosinolates, Glucoraphanin and Glucoerucin, are Antagonists to Aryl Hydrocarbon Receptor as Their Chemopreventive Potency

  • Razis, Ahmad Faizal Abdull;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5801-5805
    • /
    • 2015
  • As a cytosolic transcription factor, the aryl hydrocarbon (Ah) receptor is involved in several pathophysiological events leading to immunosuppression and cancer; hence antagonists of the Ah receptor may possess chemoprevention properties. It is known to modulate carcinogen-metabolising enzymes, for instance the CYP1 family of cytochromes P450 and quinone reductase, both important in the biotransformation of many chemical carcinogens via regulating phase I and phase II enzyme systems. Utilising chemically-activated luciferase expression (CALUX) assay it was revealed that intact glucosinolates, glucoraphanin and glucoerucin, isolated from Brassica oleracea L. var. acephala sabellica and Eruca sativa ripe seeds, respectively, are such antagonists. Both glucosinolates were poor ligands for the Ah receptor; however, they effectively antagonised activation of the receptor by the avid ligand benzo[a]pyrene. Indeed, intact glucosinolate glucoraphanin was a more potent antagonist to the receptor than glucoerucin. It can be concluded that both glucosinolates effectively act as antagonists for the Ah receptor, and this may contribute to their established chemoprevention potency.