• 제목/요약/키워드: CYP inhibitor

검색결과 66건 처리시간 0.028초

Characterization of Deoxypodophyllotoxin Metabolism in Rat Liver Microsomes

  • Lee, Sang-Kyu;Jun, In-Hye;Kang, Mi-Jeong;Jeon, Tae-Won;Kim, Ju-Hyun;Seo, Young-Min;Shin, Sil;Choi, Jae-Ho;Jeong, Hye-Gwang;Lee, Seung-Ho;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.190-196
    • /
    • 2008
  • Deoxypodophyllotoxin (DPT) is a medicinal herb product isolated from Anthriscus sylvestris. DPT possesses beneficial activities in regulating immediate-type allergic reaction and anti-inflammatory activity through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase. In the present study, the metabolism of DPT was further characterized in rat liver microsomes isolated from male Sprague Dawley rats. The metabolism of DPT was NADPH-dependent. In addition, when liver microsomes were incubated with SKF-525A, a well-known CYP inhibitor, in the presence of $\beta$-NADPH, the metabolism of DPT was significantly inhibited. Using enriched rat liver microsomes, the anticipated isoforms of cytochrome P450s (CYPs) in the metabolism of DPT were partially characterized. Phenobarbital-induced microsomes increased in the formation of metabolite M1. The metabolite M3 was only produced in the enriched microsomes isolated from dexamethasone-treated rats. The results indicated that the metabolism of DPT would be CYP-dependent and that CYP2B and CYP3A might be important in the metabolism of DPT in rats.

Cytochrome P450 3A4에 의한 Aflatoxin $B_1$의 산화에 대한 Dehydronifedipine의 영향 (The Effect of Dehydronifedipine on the Oxidation of Aflatoxin $B_1$ by Cytochrome P450 3A4)

  • 김복량;권강범;김동현
    • Toxicological Research
    • /
    • 제15권1호
    • /
    • pp.95-101
    • /
    • 1999
  • Cytochrome P450 (CYP) 3A4 metabolizes aflatoxin B1 (AFB1) to AFB1-exo-8,9-epoxide (8,9-epoxidation) and aflatoxin Q1 (AFQ1; 3$\alpha$-hydroxylation) simultaneously. We investigated whether each metabolite was formed via its own binding site of CAP3A4 active site. Kinetics of the formation of the two metabolites were sigmoidal and consistent with the kinetics of substrate activation. The HIll model predicted that two substrate binding wites are involved in the oxidationof AFB1 by CYP3A4. Dehydronifedipine, a metabolite of nifedipine generated by CYP3A4, inhibited the formation of AFQ1 without any inhibition in the formation of AFB1-exo-8,9-epoxidation. Dehydronifedipine was found to act as a reversible competitive inhibitor against 3$\alpha$-hydroxylation of AFB1. Vmax and S0.5 of the 8,9-epoxidation were not changed in the presence of 0, 50, or 100 $\mu\textrm{M}$ dehydronifedipine. S0.5 of 3$\alpha$-hydroxylation was increased from 58$\pm$4 $\mu\textrm{M}$ to 111$\pm$8 $\mu\textrm{M}$ in the presence of 100 $\mu\textrm{M}$ nifedipine whereas Vmax was not changed. These results suggest that there exist two independent binding sites in the active site of CAP3A4 . One binding site is responsible for AFB1-exo-8,9-epoxidation and the other is involved in 3$\alpha$-hydroxylation of AFB1. Dehydronifedipine might selectively bind to the site which is responsible for the formation of AFQ1 in the active site of CYP3A4.

  • PDF

COX-inhibitors down-regulate TCDD-induced cyp1a1 activity in C57BL/6 mouse and Hepa- 1 cells.

  • Bang-Sylie;Cho, Min-Jung;Sheen, Yhun-Yhong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.292.1-292.1
    • /
    • 2002
  • In order to understand the mechanism of action of TCDD. we have examined the effect of COX-inhibitors on cypla1 activity. We observed the effect of COX-inhibitor on EROD activity in C57BL/6 mouse in vovo. And we also evaluated the effect of COX-inhibitors on cypla1 mRNA. mouse cyplal promoter activity and EROD activity in Hepa cell. When Aspirin were pretreated with 3MC in vivo, the EROD activity that was stimulated by 3MC was inhibited. (omitted)

  • PDF

Set, a Putative Oncogene, As a Biomarker for Prenatal Exposure to Bisphenol A

  • Lee, Ho-Sun;Pyo, Myoung-Yun;Yang, Mi-Hi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2711-2715
    • /
    • 2012
  • Background: Bisphenol A (BPA), an endocrine disrupting chemical, has been suspected to pose carcinogenic risks. However, likely mechanisms are obscure and there are difficulties to estimating its real significance for cancer development. Methods: We therefore studied BPA-induced proteomic alterations in immune organs of ICR mice offspring that were prenatally exposed to BPA (15 and 300 mg/L of drinking water). We performed 2D-gel analyses of samples, considering differences in spleen, exposure levels, sex, and ages. Results: From proteomic analyses, we found various proteins were up- or down-regulated by BPA. Among them, SET, a putative oncogene and inhibitor of phosphatase 2A, was significantly down-regulated in a BPA dose-dependent manner. We also confirmed down-regulation of SET in western blot and real time PCR analyses. From gene network analysis, SET is predicted to communicate with other genes including CYP17, which is involved in biosynthesis and metabolism of sex-hormones. Conclusions: This study provided evidence that SET can be applied as a new biomarker for prenatal BPA exposure and suggests a potential new mechanism of action in that BPA may disrupt CYP17 via SET.

흰쥐에서 에피게로카테친의 장기투여가 베라파밀의 약물동태에 미치는 영향 (The Effect of Long-term Administration of Epigallocatechin on the Pharmacokinetics of Verapamil in Rats)

  • 윤재경;최준식
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권2호
    • /
    • pp.107-111
    • /
    • 2007
  • Epigallocatechin gallate (EGCC), a flavonoid, is the main component of green tea extracts. EGCG has been reported to be an inhibitor of P-glycoprotein (P-gp) and cytochrom P450 3A(CYP3A4). This study investigated the effect of long-term administration of EGCG on the pharmacokinetics of verapamil in rats. Pharmacokinetic parameters of verapamil were determined after oral administration of verapamil (9 mg/kg) in rats pretreated with EGCG (7.5 mg/hg) for 3 and 9 days. Compared to oral control group, the presence of EGCG significantly (p<0.01) increased the area under the plasma concentration-time curve (AUC) of verapamil by 102% (coad), 83.2% (3 days) and 52.3% (9 days), and the peak concentration $(C_{max})$ by 134% (coad), 120% (3 days) and 66.1% (9 days). The absolute bioavailability (A.B.%) of verapamil was significantly (p<0.01) higher by 8.4% (coad), 7.7% (3 days), 6.4% (9 days) compared to control (4.2%), and presence of EGCG was no significant change in the terminal half-life $(t_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of verapamil. Our results indicate that EGCG significantly enhanced oral bioavailability of verapamil in rats, implying that presence of EGCG could be effective to inhibit the CYP3A4-mediated metabolism and P-gp efflux of verapamil in the intestine. Drug interactions should be considered in the clinical setting when verapamil is coadministrated with EGCG or EGCG-containing dietary.

The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

  • Kim, Mijie;Park, Yong Joo;Ahn, Huiyeon;Moon, Byeonghak;Chung, Kyu Hyuck;Oh, Seung Min
    • Environmental Analysis Health and Toxicology
    • /
    • 제31권
    • /
    • pp.10.1-10.8
    • /
    • 2016
  • Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and $17{\beta}$-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases ($3{\beta}$-HSD2 and $17{\beta}$-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and $100{\mu}g/mL$) showed a significant decrease in $17{\beta}$-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and $17{\beta}$-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and $17{\beta}$-HSD1, and lead to a decrease in $17{\beta}$-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer.

인후두역류질환 (Laryngopharyngeal Reflux Disease, LPRD)에서 Rabeprazole Sodium($Pariet^{\circledR}$)의 임상효과 (The clinical effects of rabeprazole sodium($Pariet^{\circledR}$) in the treatment of Layngopharyngeal Reflux)

  • 최홍식;최현승;김한수
    • 대한기관식도과학회지
    • /
    • 제9권1호
    • /
    • pp.60-66
    • /
    • 2003
  • Although there is a wide range of diseases caused by gastric acid reflux and the number of cases is on the rise, it is difficult for the laryngologist to make the correct diagnosis. The treatment for laryngopharyngeal reflux can be grouped into 3 categories - changes in lifestyle, medication, and surgery. The medication used to treat laryngopharyngeal reflux are prokinetic agents and acid supressive agents such as antacids, H2 blockers, and PPIs(Proton pump inhibitor). Rabeprazole sodium($Pariet^{\circledR}$) is a newly developed agent belonging to the PPI group, but in contrast with the existing drugs such as omeprazole, lansoprazole, pantoprazole, has a low dependency on CYP2C19 during the metabolic cycle. Thus, it is known to have a quick but fixed antiacid effect and less individual differences. We analyzed 2166 patients from 32 hospitals who were prescribed $Pariet^{\circledR}$ from May, 2001 to April, 2002. The patients were divided into 4 groups according to the duration of treatment - Group 1: 1-14 days, Group 2: 15-28 days, group 3: 29-56 days, Group 4: more than 56 days. The cases were then analyzed for improvement of 8 symptoms(heart bum, regurgitation, chronic cough, hoarseness, globus sensation, chronic throat clearing, sore throat, and dysphagia), improvement on laryngoscope, usefulness to the doctor, and complication development. Of the total of 2116 patients, 1627(75.1%) cases showed at least 50% improvement of symptoms and the amount of improvement increased according to the duration of medical treatment. Most of the patients showed objective improvement on the laryngoscope, with 32.9% showing significant improvement and 38.7% showing moderate improvement. 37.6% of the doctors questioned replied that $Pariet^{\circledR}$ was very useful and 50.3% said it was useful, showing that most were satisfied with the treatment results. The complications known to develop after taking PPI are headache, nausea, diarrhea, abdominal pain, constipation, dizziness, fatigue, and of these, only a small percentage of the patients complained of mild headache. $Pariet^{\circledR}$ has shown to be a relatively safe and effective drug for the treatment of laryngopharyngeal reflux.

  • PDF

Discovery of a Novel 2,6-Difunctionalized 2H-Benzopyran Inhibitors Toward Sphingosylphosphorylcholine Synthetic Pathway as New Anti-inflammatory Target

  • Lee, Gee-Hyung;Lee, Seong Jin;Jeong, Dae Young;Kim, Ha-Young;Lee, Doohyun;Lee, Taeho;Hwang, Jong-Yeon;Park, Woo Kyu;Kong, Jae-Yang;Cho, Heeyeong;Gong, Young-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2385-2390
    • /
    • 2014
  • Novel 2,6-difuctionalized 2H-benzopyrans were synthesized and evaluated for a sphingosylphosphorylcholine(SPC) inhibitor. The synthetic 2H-benzopyrans 1c and 3a showed high potency in SPC-induced cell proliferation assay ($IC_{50}$ < 20 nM). Neither hERG $K^+$ channel binding (> $10{\mu}M$) nor CYP inhibitions (> $10{\mu}M$) were observed. Also, the simple structure-activity relationship (SAR) results were obtained from analysis of 2H-benzopyran derivatives 1-3 and the anti-SPC effect of 2H-benzopyran 1c was confirmed by a HUVEC tube formation assay.