• Title/Summary/Keyword: CYP

Search Result 928, Processing Time 0.027 seconds

Inhibitory Effects of Dietary Schisandra Supplements on CYP3A Activity in Human Liver Microsomes

  • Kang, Bae-Gon;Park, Eun-Ji;Park, So-Young;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.152-157
    • /
    • 2022
  • Schisandra chinensis and its fruits have been used as a traditional herbal medicine to treat liver dysfunction, fatigue, and chronic coughs. Several in vitro and in vivo studies suggested that dibenzocyclooctadiene lignans present in Schisandra fruits strongly inhibit CYP3A4 activity. However, reports on the inhibitory potential of dietary Schisandra supplements against CYP3A activity are limited despite their increasing consumption as dietary supplements. In this study, we evaluated the CYP3A-inhibitory potential of four dietary Schisandra supplements in human liver microsomes. At a concentration of 0.05 mg/mL, Schisandra supplements from Nature's Way, Swanson, Planetary Herbals, and Only Natural inhibited CYP3A activity by 93.9, 70.8, 33.6, and 24.8%, respectively. Nature's Way, which exhibited the strongest inhibition against CYP3A, had the highest contents of gomisin B and gomisin C, which potently inhibit CYP3A activity. The in vivo pharmacokinetics of this product should be examined to determine whether the clinical relevance of inhibiting CYP3A activity by dietary Schisandra supplementation.

The Alcohol-inducible form of Cytochrome P450 (CYP 2E1): Role In Toxicology and Regulation of Expression

  • Novak, Raymond F.;Woodcroft, Kimberley J.
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.267-282
    • /
    • 2000
  • Cytochrome P45O (CYP) 2E1 catalyzes the metabolism of a wide variety of therapeutic agents, procarcinogens, and low molecular weight solvents. CYP2E1-catalyzed metabolism may cause toxicity or DNA damage through the production of toxic metabolites, oxygen radicals, and lipid peroxidation. CYP2E1 also plays a role in the metabolism of endogenous compounds including fatty acids and ketone bodies. The regulation of CYP2E1 expression is complex, and involves transcriptional, post-transcriptional, translational, and post-translational mechanisms. CYP2E1 is transcriptionally activated in the first few hours after birth. Xenobiotic inducers elevate CYP2E1 protein levels through both increased translational efficiency and stabilization of the protein from degradation, which appears to occur primarily through ubiquitination and proteasomal degradation. CYP2E1 mRNA and protein levels are altered in response to pathophysiologic conditions by hormones including insulin, glucagon, growth hormone, and leptin, and growth factors including epidermal growth factor and hepatocyte growth factor, providing evidence that CYP2E1 expression is under tight homeostatic control.

  • PDF

Meta-analysis of Association Studies of CYP1A1 Genetic Polymorphisms with Digestive Tract Cancers Susceptibility in Chinese

  • Liu, Chang;Jiang, Zheng;Deng, Qian-xi;Zhao, Ya-nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4689-4695
    • /
    • 2014
  • Background: A great number of studies have shown that cytochrome P450 1A1 (CYP1A1) genetic polymorphisms, CYP1A1 Msp I and CYP1A1 Ile/Val, might be risk factors for digestive tract cancers, including esophageal cancer (EC), gastric cancer (GC), hepatic carcinoma (HC), as well as colorectal cancer (CC), but the results are controversial. In this study, a meta-analysis of this literature aimed to clarify associations of CYP1A1 genetic polymorphisms with digestive tract cancers susceptibility in Chinese populations. Materials and Methods: Eligible case-control studies published until December 2013 were retrieved by systematic literature searches from PubMed, Embase, CBM, CNKI and other Chinese databases by two investigators independently. The associated literature was acquired through deliberate search and selection based on established inclusion criteria. Fixed-effects or random-effects models were used to estimate odds ratios (ORs and 95%CIs). The meta-analysis was conducted using Review Manager 5.2 and Stata 12.0 softwares with stability evaluated by both stratified and sensitivity analyses. Moreover, sensitivity analysis and publication bias diagnostics confirmed the reliability and stability. Results: Eighteen case-control studies with 1,747 cases and 2,923 controls were selected for CYP1A1 MspI polymorphisms, and twenty case-control studies with 3, 790 cases and 4, 907 controls for the CYP1A1 Ile/Val polymorphisms. Correlation associations between CYP1A1 Ile/Val polymorphisms and digestive tract cancers susceptibility were observed in four genetic models in the meta-analysis (GG vs AA:OR= 2.03, 95%CI =1.52- 2.72; AG vs AA: OR=1.26, 95%CI =1.07-1.48; [GG+AG vs AA] :OR =1.42, 95%CI=1.20-1.68, [GG vs AA+AG]:OR=1.80, 95%CI =1.40-2.31). There was no association between CYP1A1 Msp I polymorphisms and digestive tract cancers risk. Subgroup analysis for tumor type showed a significant association of CYP1A1 Ile/Val genetic polymorphisms with EC in China. However, available data collected by the study failed to reveal remarkable associations of GC or HC with CYP1A1 Ile/Val genetic polymorphisms and EC, GC or CC with CYP1A1 MspI genetic polymorphisms. Conclusions: Our results indicated that CYP1A1 Ile/Val genetic polymorphisms, but not CYP1A1 Msp I polymorphisms, are associated with an increased digestive tract cancers risk in Chinese populations. Additional well-designed studies, with larger sample size, focusing on different ethnicities and cancer types are now warranted to validate this finding.

Effect of PAH on CYP1B1 Gene Expression (PAH가 CYP1B1 유전자 발현에 미치는 영향)

  • Seo, Mi-Jung;Min, Kyung-Nan;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.3
    • /
    • pp.121-127
    • /
    • 2004
  • Cytochrome P4501B1(CYP1B1) is known to be inducible by xenobiotic compounds such as policyclic aromatic hydrocarbon(PAH) and dioxins such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). And these induction of CYP1B1 is also regulated by many categories of chemicals. In order to investigate the effects of several chemicals on CYP1B1 gene expression in Hepa-I and MCF-7 cells, 5' flanking DNA of human CYP1B1 was cloned into pGL3 basic vector containing luciferase gene, and then transfected into these cells. After treatment of chemicals, the luciferase activity was measured. CYP1B1 enzyme metabolize PAHs and estradiol. CYP1B1 metabolize estradiol to 4-hydrozyestradiol that is considered as carcinogenic metabolite. Luciferase activity was induced about 20 folds over that control by 1 nM TCDD (2,3,7,8-tetrachloto-p-dioxin). Recent industrialized society, human has been widely been exposed to widespread environmental contaminants such as PAHs(polycyclic aromatic hydrocarbon) that are originated from the imcomplete combustion of hydrocarbons. PAHs are known to be ligands of the AhR(aryl hydrocarbon receptor). Induction of cytochrome P4501B1(CYP1B1) in cell culture is widely used as a biomarker for PAHs. Therefore we have studied the effect of PAHs in the human breast cancer cells MCF-7 to evaluate bioactivity of PAHs. We have used the United State of America EPA selected 13 different PAHs, PAHs mixtures and extracts from environmental samples to evaluate the bioassay system. We examined effects of PAHs on the CYP1B1-luciferase reporter gene and CYP1B1 mRNA level. Benzo(k)fluoranthene and dibenzo(a, h)anthracene showed strong response to CYP1B1 promoter activity stimulation, and also CYP1B1 mRNAs increase in MCF-7 cells in a concentration-dependent manner. Acenaphthene, anthracene, benzo(b)fluoranthene, fluorene, fluoranthene, anphthanlene, pyrene, phenanthrene and carbazole were weak responders in MCF-7 cells. RT-PCR analysis indicated that PAHs significantly up-regulate the level of CYP1B1 mRNA.

  • PDF

Cytochrome P450 monooxygenase analysis in free-living and symbiotic microalgae Coccomyxa sp. C-169 and Chlorella sp. NC64A

  • Mthakathi, Ntsane Trevor;Kgosiemang, Ipeleng Kopano Rosinah;Chen, Wanping;Mohlatsane, Molikeng Eric;Mojahi, Thebeyapelo Jacob;Yu, Jae-Hyuk;Mashele, Samson Sitheni;Syed, Khajamohiddin
    • ALGAE
    • /
    • v.30 no.3
    • /
    • pp.233-239
    • /
    • 2015
  • Microalgae research is gaining momentum because of their potential biotechnological applications, including the generation of biofuels. Genome sequencing analysis of two model microalgal species, polar free-living Coccomyxa sp. C-169 and symbiotic Chlorella sp. NC64A, revealed insights into the factors responsible for their lifestyle and unravelled biotechnologically valuable proteins. However, genome sequence analysis under-explored cytochrome P450 monooxygenases (P450s), heme-thiolate proteins ubiquitously present in species belonging to different biological kingdoms. In this study we performed genome data-mining, annotation and comparative analysis of P450s in these two model algal species. Sixty-nine P450s were found in two algal species. Coccomyxa sp. showed 40 P450s and Chlorella sp. showed 29 P450s in their genome. Sixty-eight P450s (>100 amino acid in length) were grouped into 32 P450 families and 46 P450 subfamilies. Among the P450 families, 27 P450 families were novel and not found in other biological kingdoms. The new P450 families are CYP745-CYP747, CYP845-CYP863, and CYP904-CYP908. Five P450 families, CYP51, CYP97, CYP710, CYP745, and CYP746, were commonly found between two algal species and 16 and 11 P450 families were unique to Coccomyxa sp. and Chlorella sp. Synteny analysis and gene-structure analysis revealed P450 duplications in both species. Functional analysis based on homolog P450s suggested that CYP51 and CYP710 family members are involved in membrane ergosterol biosynthesis. CYP55 and CYP97 family members are involved in nitric oxide reduction and biosynthesis of carotenoids. This is the first report on comparative analysis of P450s in the microalgal species Coccomyxa sp. C-169 and Chlorella sp. NC64A.

Effects of Nonylphenol on CYP17 and CYP19 Expression in the Ovary of Sprague-Dawley Female Rats (Nonylphenol이 CYP17 및 CYP19발현에 미치는 영향)

  • Kim Hee Jin;Ahn Mee Young;Kim In Young;Kang Tae Seok;Kim Tae Sung;Kang Il Hyun;Moon Hyun Ju;Kil Hoyun;Kim Soon Sun;Lee Rhee Da;Park Kui Lea;Han Soon Young;Kim Hyung Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.3 s.50
    • /
    • pp.195-203
    • /
    • 2005
  • Cytochrome P45O 17$\alpha$-hydroxylase (CYPI 7) and cytorhrome P45O aromata.ie (CYPI 9) are key steroidogenic enzymes in androgen and estrogen synthesis. ThiL study evaluated the effects of nonylphenol (NP) on CYP17 and CYP19 expression in the ovary of Sprague-Dawley rats. All female rats were administered orally with the vehicle (control, corn oil), diethylstilbestrol (DES, 5.0 $\mu$g/kg) and NP (50, 100, or 200 mg/kg/day), which was startinB when they were weaned at 21 days of age for 20 days. Twenty four hours after final dose, the animals were anelthetized with ether. Significant decreases in the uterus (wet weight) were observed with 5.0 $\mu$g/kg/day DES (78$\%$, of control) and 200 mg/kg/day NP (62$\%$ of control), respectively Additionally, ovarian weight was significantly decreased with 5.0 $\mu$g/kg/day DES (63$\%$ of control) and 200 mg/kg/day NP (72$\%$ of control). The serum estradiol levels were sligHtly lower in DES and high dose NP treatment groups, but the 74 levels were not affected by DES and NP. The expression of the ovarian CYP19 gene increased with low doses (50 and 100 mg/kg/day) of NP. while DES and high dose oi NP (200 mg/kg/day) did not affect on the CYP19 mRNA levels. In contrast to the CYP19 gene, the CYP17 gene expreLsion level was significantly down-regulated by the DES and 200 mg/ks/day NP. This result suggestE that NP inhibits ovarian estrogen synthelis by supprelsing CYP17 mRNA efprelsion, And different mechanisml might exist for the expression of Lteroidogenic CYP17 and CYP19 genes in the ovary of Sprague-Dawley rats in response to NP.

Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay

  • Kim, Young-Hoon;Bae, Young-Ji;Kim, Hyung Soo;Cha, Hey-Jin;Yun, Jae-Suk;Shin, Ji-Soon;Seong, Won-Keun;Lee, Yong-Moon;Han, Kyoung-Moon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.486-492
    • /
    • 2015
  • Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their interassay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

Inhibition of Drug-metabolizing Enzyme and Drug Transporter by Major Components of Phellodendri cortex (황백의 주요 구성 화합물에 의한 약물대사효소 및 약물수송단백 저해능 평가)

  • Ku, Hei-Young;Kim, Hyunmi;Shon, Ji-Hong;Liu, Kwang-Hyeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.213-217
    • /
    • 2006
  • We evaluated the potential of major components of Phellodendri cortex to inhibit the activities of CYP2D6 and p-glycoprotein. The abilities of berberine, palmatine, limonin, and rutaecarpine to inhibit CYP2D6-mediated dextromethorphan O-demethylation and calcein AM accumulation were tested using human liver microsomes and L-MDR1 cell, respectively. Berberine strongly inhibited CYP2D6 isoform activity, whereas limonin and reuaecarpine did not. The $IC_{50}$ value of berberine was reduced after preincubation with microsomes in the presence of NADPH generating system, suggesting that berberine is a mechanism based inhibitor. In addition, all chemicals tested, didn't show inhibitory effect on p-glycoprotein activity. These results suggest that berberine has potential to inhibit CYP2D6 activity in vitro. Therefore, in vivo studies investigating the interactions between berberine and CYP2D6 substrates are necessary to determine whether inhibition of CYP2D6 activity by berberine is clinically relevant.

  • PDF

Effect of Daisdzein on the Benzo(k)fluoranthene Regulated CYP1B1 Gene Expression (Daisdzein이 Benzo(k)fluoranthene에 의한 CYP1B1 유전자조절 작용에 미치는 영향)

  • Seo, Mi-Jeong;Kim, Yeo-Woon;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.4
    • /
    • pp.198-205
    • /
    • 2004
  • Cytochrome P4501B1(CYP1B1) is known to be inducible by xenobiotic compounds such as policyclic aromatic hydrocarbon(PAH) and dioxins such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). And these induction of CYP1B1 is also regulated by many categories of chemicals. In order to investigate the effects of several chemicals on CYP1B1 gene expression in Hepa-I and MCF-7 cells, 5' flanking DNA of human CYP1B1 was cloned into pGL3 basic vector containing luciferase gene, and then transfected into these cells. After treatment of chemicals, the luciferase activity was measured. CYP1B1 enzyme metabolize PAHs and estradiol. CYP1B1 metabolize estradiol to 4-hydrozyestradiol that is considered as carcinogenic metabolite. Recent industrialized industrialized society, human has been widely been exposed to widespread environmental contaminants such as PAHs(polycyclic aromatic hydrocarbon) that are originated from the imcomplete combustion of hydrocarbons. PAHs are known to be ligands of the AhR(aryl hydrocarbon receptor). Induction of cytochrome P4501B1(CYP1B1) in cell culture is widely used as a biomarker for PAHs. Therefore we have studied the effect of PAHs in the human breast cancer cells MCF-7 to evaluate bioactivity of PAHs. We have used the United State of America EPA selected 13 different PAHs, PAHs mixtures and extracts from environmental samples to evaluate the bioassay system. We examined effects of PAHs on the CYP1B1-luciferase reporter gene and CYP1B1 mRNA level. Benzo(k)fluoranthene and dibenzo(a, h)anthracene showed strong response to CYP1B1 promoter activity stimulation, and also CYP1B1 mRNAs increase in MCF-7 cells in a concentration-dependent manner. RT-PCR analysis indicated that PAHs significantly up-regulate the level of CYP1B1 mRNA. Some flavonoids such as genistein, daidzein, chrysin, naringenin and morin were also investigeted. These flavonoids decreased B(k)F infuced luciferase activity at low concentration. But, these flavonoids exhibited stimulatory effect at high concentration.

  • PDF

Inhibition of 7-Alkoxyresorufin O-Dealkylation Activities of Recombinant Human CYP1A1 and CYP1B1 by Resveratrol

  • Dong, Mi-Sook;Chang, Suk-Kyung;Kim, Hyun-Jung;F. Peter Guengerich;Park, Young-In
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2002
  • Resveratrol is known to have potent cancer chemopreventive activity against tumorigenesis caused by 7,12-dimetylbenz[$\alpha$]anthracene(DMBA) which is known to be oxidized to reactive products by cytochrome P450 1B1 (CYP1B1). The effects of resveratrol on the activity of recombinant human P450 1 family enzymes, expressed in Escherichia coli membranes with human NADPH-P450 reductase, were determined by measuring alkoxyresorufin O-dealkylation activity, e.g., ethoxyresorufin O-deethylation (EROD) CYP1A1, methoxyresorufin O-demethylation (MROD), CYP1A2, benzyloxyresorufin-O-debenzylation (BROD), CTP1B1. Resveratrol inhibited CYP1B1 and CYP1A1 activities in a dose-dependent manner with $IC_{50}$/ values of 59 and 10$\mu$M for EROD activity and 1.8 and 30$\mu$M for BROD activity, respectively. Resveratrol had only weak inhibitory effect on CYP1A2 activity ($IC_{50}$/ values of 0.44 mM for EROD and >2 mM for MROD). Furthermore, resveratrol did not affect NADPH-P450 reductase activity significantly. Resveratrol inhibited the CYP1B1-dependent EROD activity with a $K_{i}$ of 28 $\mu$M in a non-competitive type manner. these results suggest that resveratrol-derived inhibited of CYP1B1 and CYP1A1 activities may contribute to the suppression of DMBA inducible tumorigenesis observed in extrahepatic tissues.s.

  • PDF