• Title/Summary/Keyword: CWT

Search Result 110, Processing Time 0.025 seconds

Source Localization of an Impact on a Plate using Time-Frequency Analysis (시간 주파수 분석을 이용한 충격발생 위치 추정)

  • Park, Jin-Ho;Choi, Young-Chul;Lee, Jeong-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.107-111
    • /
    • 2005
  • It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses fer the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment.

  • PDF

Void detection for tunnel lining backfill using impact-echo method based on continuous wavelet transform and convolutional neural network

  • Jiyun Lee;Kyuwon Kim;Meiyan Kang;Eun-Soo Hong;Suyoung Choi
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • We propose a new method for detecting voids behind tunnel concrete linings using the impact-echo method that is based on continuous wavelet transform (CWT) and a convolutional neural network (CNN). We first collect experimental data using the impact-echo method and then convert them into time-frequency images via CWT. We provide a CNN model trained using the converted images and experimentally confirm that our proposed model is robust. Moreover, it exhibits outstanding performance in detecting backfill voids and their status.

Identification of Potential Source Locations of PM2.5 in Seoul using Hybrid-receptor Models (하이브리드 수용모델을 이용한 서울시 PM2.5 오염원의 위치 추적)

  • Kang, Byung-Wook;Kang, Choong-Min;Lee, Hak-Sung;SunWoo, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.662-673
    • /
    • 2008
  • Two hybrid receptor models, potential source contribution function (PSCF) and concentration weighted tracjectory (CWT), were compared for locating $PM_{2.5}$ sources contributing to the atmospheric $PM_{2.5}$ concentrations in Seoul. The source contribution estimates by chemical receptor model (CMB) receptor model were used to identify better source areas, Among the sources, soil, agricultural burning, marine aerosol, coal-fired power plant and Chinese aerosol were only considered for the study because these sources were more likely to be associated with the long-range transport of air pollutant. Both methods are based on combining chemical data with calculated air parcel backward trajectories. However, the PSCF analyses were performed with trajectories above the $75^{th}$ percentile criterion values, while the CWT analyses used all trajectories. This difference resulted in locating of different sources, which might be helpful to interpret locating of $PM_{2.5}$ sources, High possible source areas in source contribution of soil and agricultural burning contributing to the Seoul $PM_{2.5}$ were inland areas of Heibei and Shandong provinces (highest density areas of agricultural production and population) in China. The "Chinese aerosol" was used as a representative source for the $PM_{2.5}$ originated from urban area in China. High possible source areas for the aerosol were the cities in China where are relatively close to the receptor. This result suggests that Chinese aerosol is likely to be a useful tool in studies on source apportionment and identification in Korea.

Comparison of genomic predictions for carcass and reproduction traits in Berkshire, Duroc and Yorkshire populations in Korea

  • Iqbal, Asif;Choi, Tae-Jeong;Kim, You-Sam;Lee, Yun-Mi;Alam, M. Zahangir;Jung, Jong-Hyun;Choe, Ho-Sung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1657-1663
    • /
    • 2019
  • Objective: A genome-based best linear unbiased prediction (GBLUP) method was applied to evaluate accuracies of genomic estimated breeding value (GEBV) of carcass and reproductive traits in Berkshire, Duroc and Yorkshire populations in Korean swine breeding farms. Methods: The data comprised a total of 1,870, 696, and 1,723 genotyped pigs belonging to Berkshire, Duroc and Yorkshire breeds, respectively. Reference populations for carcass traits consisted of 888 Berkshire, 466 Duroc, and 1,208 Yorkshire pigs, and those for reproductive traits comprised 210, 154, and 890 dams for the respective breeds. The carcass traits analyzed were backfat thickness (BFT) and carcass weight (CWT), and the reproductive traits were total number born (TNB) and number born alive (NBA). For each trait, GEBV accuracies were evaluated with a GEBV BLUP model and realized GEBVs. Results: The accuracies under the GBLUP model for BFT and CWT ranged from 0.33-0.72 and 0.33-0.63, respectively. For NBA and TNB, the model accuracies ranged 0.32 to 0.54 and 0.39 to 0.56, respectively. The realized accuracy estimates for BFT and CWT ranged 0.30 to 0.46 and 0.09 to 0.27, respectively, and 0.50 to 0.70 and 0.70 to 0.87 for NBA and TNB, respectively. For the carcass traits, the GEBV accuracies under the GBLUP model were higher than the realized GEBV accuracies across the breed populations, while for reproductive traits the realized accuracies were higher than the model based GEBV accuracies. Conclusion: The genomic prediction accuracy increased with reference population size and heritability of the trait. The GEBV accuracies were also influenced by GEBV estimation method, such that careful selection of animals based on the estimated GEBVs is needed. GEBV accuracy will increase with a larger sized reference population, which would be more beneficial for traits with low heritability such as reproductive traits.

Estimation of genetic parameter for carcass traits of commercial steers in Pyeongchang (평창지역 거세출하우 자료를 이용한 유전모수 추정)

  • Dang, Chang-Gwon;Kim, Hyeong-Cheol;Jang, Sun-Sik;Lee, Jeong-Mook;Hong, Yeong-Hun;Jeon, Gi-Jun;Yeon, Seong-Heum;Kang, Hee-Seol;Yang, Bo-Suk;Hong, Seong-Koo;Lee, Jun-Heon;Lee, Seung-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.339-345
    • /
    • 2013
  • The objective of this study was to establish genetic evaluation systems with carcass data collected by 68 individual farms from 2007 to 2011 in Pyeongchang area of Kangwon province. All the possible of environment effects were corrected by analysis of variance (ANOVA) to estimate more accurate genetic parameters. Heritabilities and genetic correlations were estimated from carcass data collected from Hanwoo steers(n=10,441) born in Pyeongchang region from 2005 to 2008. Traits evaluated included carcass weight (CWT), eye muscle area (EMA), back fat thickness (BF) and marbling score (MS). As for the mean value and standard deviation for carcass traits, CWT, EMA, BF and MS were 424.5, 92, 13.7 and 5.7. Parameters were estimated using a multiple trait animal model and derivative-free restricted maximum likelihood procedures. Estimated heritabilities for CWT, EMA, BF and MS were 0.30, 0.21, 0.42 and 0.42, respectively. Genetic correlation of CWT with EMA, BF and MS were estimated to 0.24, 0.36 and 0.07, respectively. Genetic correlation of EMA with BF and MS was -0.27 and 0.61, respectively.

Prediction of Carcass Composition Using Carcass Grading Traits in Hanwoo Steers

  • Lee, Jooyoung;Won, Seunggun;Lee, Jeongkoo;Kim, Jongbok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1215-1221
    • /
    • 2016
  • The prediction of carcass composition in Hanwoo steers is very important for value-based marketing, and the improvement of prediction accuracy and precision can be achieved through the analyses of independent variables using a prediction equation with a sufficient dataset. The present study was conducted to develop a prediction equation for Hanwoo carcass composition for which data was collected from 7,907 Hanwoo steers raised at a private farm in Gangwon Province, South Korea, and slaughtered in the period between January 2009 and September 2014. Carcass traits such as carcass weight (CWT), back fat thickness (BFT), eye-muscle area (EMA), and marbling score (MAR) were used as independent variables for the development of a prediction equation for carcass composition, such as retail cut weight and percentage (RC, and %RC, respectively), trimmed fat weight and percentage (FAT, and %FAT, respectively), and separated bone weight and percentage (BONE, and %BONE), and its feasibility for practical use was evaluated using the estimated retail yield percentage (ELP) currently used in Korea. The equations were functions of all the variables, and the significance was estimated via stepwise regression analyses. Further, the model equations were verified by means of the residual standard deviation and the coefficient of determination ($R^2$) between the predicted and observed values. As the results of stepwise analyses, CWT was the most important single variable in the equation for RC and FAT, and BFT was the most important variable for the equation of %RC and %FAT. The precision and accuracy of three variable equation consisting CWT, BFT, and EMA were very similar to those of four variable equation that included all for independent variables (CWT, BFT, EMA, and MAR) in RC and FAT, while the three variable equations provided a more accurate prediction for %RC. Consequently, the three-variable equation might be more appropriate for practical use than the four-variable equation based on its easy and cost-effective measurement. However, a relatively high average difference for the ELP in absolute value implies a revision of the official equation may be required, although the current official equation for predicting RC with three variables is still valid.

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016 (2016년 봄철 서울의 PM10, PM2.5 및 OC와 EC 배출원 기여도 추정)

  • Ham, Jeeyoung;Lee, Hae Jung;Cha, Joo Wan;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.