• 제목/요약/키워드: CWRU dataset

검색결과 4건 처리시간 0.018초

Scalogram과 Switchable 정규화 기반 합성곱 신경망을 활용한 베이링 결함 탐지 (Scalogram and Switchable Normalization CNN(SN-CNN) Based Bearing Falut Detection)

  • ;김윤수;석종원
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.319-328
    • /
    • 2022
  • 베어링은 기계가 작동할때 중요한 역할을 한다. 때문에, 베어링에 결함이 발생하면 기계전체의 치명적인 결함을 발생시킨다. 그러므로 베어링 결함은 조기에 발견되어야한다. 본 논문에서는 연속 웨이블릿 변환과 Switchable 정규화를 기반으로 한 합성곱 신경망(SN-CNN)을 이용한 방법을 베어링 결함 감지 모델에 대해 설명한다. 모델의 정확도는 Case Western Reserve University(CWRU) 베어링 데이터 집합을 사용하여 측정되었다. 또한 배치 정규화(BN, Batch Normalization)[1] 방법과 스펙트로그램 이미지가 모델 성능의 비교를 위해 사용되었다.

MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법 (An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions)

  • 서양진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권4호
    • /
    • pp.179-188
    • /
    • 2022
  • 기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.

사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법 (Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault)

  • 김진영;선준호;윤성훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-14
    • /
    • 2022
  • 각종 기기들이 연결되는 사물인터넷(internet of things) 시스템에서 중요한 부품의 고장은 경제적, 인명의 손실을 야기할 수 있다. 시스템 내에서 발생하는 고장으로 인한 손실을 줄이기 위해 고장 검진 기술이 IoT에서 중요한 기술로써 여겨지고 있다. 본 논문에서는 그래프 신경망 기반 방법을 사용하여 시스템 내의 설비에서 취득된 진동 데이터의 특징을 추출하여 고장 여부를 판단하고 유형을 분류하는 방법을 제안한다. 딥러닝 모델의 학습을 위해, CWRU(case western reserve university)에서 취득된 고장 데이터 셋을 입력 데이터로 사용한다. 제안하는 모델의 분류 정확도 성능을 확인하기 위해 기존 제안된 합성곱 신경망(convolutional neural networks) 기반 분류 모델과 제안된 모델을 비교한다. 시뮬레이션 결과, 제안된 모델은 불균등하게 나누어진 데이터에서 기존 모델보다 분류 정확도를 약 5% 향상 시킬 수 있는 것을 확인하였다. 이후 연구로, 제안하는 모델을 경량화해서 분류 속도를 개선할 예정이다.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.