• Title/Summary/Keyword: CWDM

Search Result 31, Processing Time 0.022 seconds

Polarization Insensitive CWDM Optical Demultiplexer Based on Polarization Splitter-rotator and Delayed Interferometric Optical Filter

  • Seok-Hwan Jeong;Heuk Park;Joon Ki Lee
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.166-175
    • /
    • 2023
  • We theoretically analyze and experimentally demonstrate a polarization-diversified four-channel optical demultiplexer (DeMUX) comprising a hybrid mode conversion-type polarization splitter rotator (PSR) and delayed Mach-Zehnder interferometer optical DeMUX for use in coarse wavelength division multiplexing (CWDM)-based optical interconnect applications. The Si wire-based device fabricated by a complementary metal-oxide semiconductor-compatible process exhibited nearly the same filter spectral response irrespective of the input polarization state under the PSR. The device had an extremely low insertion loss of <1.0 dB, polarization-dependent loss of <1.0 dB, and interchannel imbalance of <0.5 dB, suppressing unwanted wavelength and polarization crosstalk from neighboring channels of <-20 dB at each peak transmission channel grid.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Analysis of Coupled Mode Theory for Design of Coupler Between Optical Fiber And Grating Assisted Waveguide (광섬유와 격자구조 도파로 결합기 설계를 위한 결합 모드 이론 분석)

  • Heo, Hyung-Jun;Kim, Sang-In
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.561-568
    • /
    • 2017
  • In order to effectively utilize the Coarse Wavelength Division Multiplexing(CWDM) technology in optical integrated devices, a design of a wavelength selective coupler structure between an optical fiber and an optical waveguide in a flat substrate is can be considered. In this paper, we consider the coupling between a silicon waveguide with an air trench and a single mode fiber. We investigated the tendency of coupling efficiency and its limitations according to the grating depth. For this purpose, the coupling efficiency of coupler structure designed through modeling based on coupled mode theory is predicted and quantitatively compared with simulation results using finite element method.

Add/drop Filter for CWDM Systems Using Side-coupled Long-period Fiber Gratings

  • Chan Florence Y. M.;Kim Myoung Jin;Lee Byeong Ha
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.135-139
    • /
    • 2005
  • We demonstrate a simple and effective wavelength-tunable add/drop filter suitable for coarse wavelength division multiplexing (CWDM) systems. The filter consists of two fibers in contact side by side, with identical long-period fiber gratings (LPG) in each fiber. The LPG couples the power in the fundamental core mode to one of the cladding modes, which is then coupled to the same order cladding mode in the other fiber through evanescent-field coupling between two fibers. Finally, the cladding mode in the second fiber is coupled to its core mode with the help of the other LPG. With an optimal longitudinal offset distance of 10 em, coupling efficiency as high as -1.68 dB and side lobes smaller than -24 dB were experimentally obtained. The experimental results agreed well with the theoretical ones. The operating wavelength of the proposed add/drop filter was tunable by varying the temperature. The temperature sensitivity was measured to be -0.43 nm/$^{\circ}C$.

A Wavelength Allocation Method for Bidirectional Transmission in a CWDM Channel

  • Moon, Jung-Hyung;Choi, Ki-Man;Lee, Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.6-9
    • /
    • 2007
  • We propose a wavelength allocation method for bidirectional transmission in a coarse wavelength division multiplexing channel. The method can be accommodated by assigning a different upstream wavelength from the downstream wavelength at room temperature to eliminate penalties induced by backscattering, including Rayleigh backscattering. We suggest a procedure to obtain the minimum wavelength difference.

Quantum Interference Experiments with Frequency Entangled Photon Pairs at 1.5 ㎛ Telecommunication Band (1.5 ㎛ 통신파장대역 진동수 얽힘 광자쌍의 양자간섭)

  • Kim, Heon-Oh;Kim, Yong-Soo;Youn, Chun-Ju;Cho, Seok-Beom
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.276-282
    • /
    • 2011
  • We performed experiments on Hong-Ou-Mandel type two-photon interference with frequency entangled photon pairs at 1.5 ${\mu}m$ telecommunication band generated through femtosecond pulsed spontaneous parametric down-conversion. Two different angular frequencies ${\omega}_1$ and ${\omega}_2$ were selected using CWDM(coarse wavelength division multiplexing) filters at the output ports of the interferometer. The coincidence counting rates were measured with varying path-length difference between the two interferometer arms to observe the two-photon interference patterns of spatial beating. The obtained visibilities in the net coincidence were close to the theoretical limit of 100%.

Simultaneous Measurement of Strain and High Frequency Vibration of Composite Main Wing Model (복합재 주 날개 모델의 변형률과 진동의 동시 측정)

  • Song, Ji-Yong;Yoon, Hyuk-Jin;Park, Sang-Wuk;Park, Sang-Oh;Kim, Chon-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.185-189
    • /
    • 2005
  • For the simultaneous measurement of strain and vibration signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter could measure low-frequency signal such as strain and the other demodulator using a coarse wavelength division multiplexer could detect high-frequency signal such as vibration signal using intensity demodulation method. In order to measure strain and vibration of the composite main wing model under static loading a real time monitoring program was developed. Also using intensity demodulation of CWDM, sensitivity and resolution at high frequency vibration were evaluated.

  • PDF

Optimization for Arrayed Waveguide Grating having MMI Coupler for Flattened Transfer Function

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.169-173
    • /
    • 2006
  • This paper describes an efficient optimal design method for an arrayed waveguide grating (AWG) having MMI coupler with flattened transfer function. The objective function is the norm of the difference between calculated and target spectra. To analyze the AWG transfer function, the Fresnel-Kirchhof diffraction formula was employed and the design variable was optical path difference of each array waveguide. The (1+1) Evolution Strategy was applied to an eight-channel coarse wavelength division multiplexing (CWDM) AWG as the optimization tool. For obtaining a broadened spectrum, we use a MMI coupler and the variation in optical path difference at each array waveguide changes the shape of the transfer function to obtain the optimal spectrum shape.

An Efficient Design Technique for the Flattened Transfer Function of Arrayed Waveguide Grating

  • Jung Jae-Hoon;Moon Hyung-Myung;Kwak Seung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2006
  • This paper describes an efficient optimal design method for an arrayed waveguide grating (AWG) with flattened transfer function. The objective function is the norm of the difference between calculated and target spectra. To analyze the AWG transfer function, the Fresnel-Kirchhof diffraction formula was employed and the design variable was optical path difference of each array waveguide. The (1+1) Evolution Strategy was applied to an eight-channel coarse wavelength division multiplexing (CWDM) AWG as the optimization tool. The optimized transfer function will considerably improve the system performance.

Analysis on Current Status and Future Direction of CA*net3 (CA*net3 구축 현황 및 향후 추진 방향 분석)

  • Kim, S.Y.;Lee, J.K.;Jun, K.P.
    • Electronics and Telecommunications Trends
    • /
    • v.15 no.5 s.65
    • /
    • pp.73-85
    • /
    • 2000
  • 인터넷 이용자와 트래픽의 급속한 증가는 인터넷의 이용에 많은 문제점들을 야기하고 있다. 각국은 차세대 인터넷에서의 기술 주도권 확보를 통하여 국가경쟁력을 강화하고 자국민의 삶의 질을 향상하고자 노력하고 있다. 미국의 NGI, Internet2, 캐나다의 CA*net이 대표적인 사례이다. 따라서 본 논문은 캐나다 정부가 주도적으로 전국 규모로 광 인터넷 네트워크 구축을 추진중에 있는 CA*net3에 대하여 추진 배경, 구축 및 운영 현황과 앞으로의 전개 방향을 살펴본다. 특히 CA*net3는 DWDM 기반의 코아 백본 네트워크와 CWDM과 기가 이더넷 기술에 기반을 두고 구축하고 있는 지역 네트워크(ORAN)로 이루어져 있다. 따라서 현재 추진중인 CA*net3 네트워크 구조에 대하여 중점적으로 살펴보며, 'Customer Empowered Networking Revolution'이라는 개념을 바탕으로 향후 추진하고자 하는 CA*net4 추진 동향에 대하여 자세히 살펴보고자 한다.