• Title/Summary/Keyword: CW signal

Search Result 122, Processing Time 0.025 seconds

Development of a New Vehicle Detector Combining CW Radar and Magnetometer Techniques (CW 레이다와 자계기술을 복합한 새로운 차량검지기 개발)

  • 정재영;김인석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.564-581
    • /
    • 1999
  • This paper introduces a new, small, low cost, robust and quick replaceable pavement-based vehicle detector using CW radar, magnetometer, and UHF small antennal techniques. The detector has been developed for a replacement of loop detectors having wide surface areas, for a more accurate operation under all weather conditions, and for no algorithmic change of the existing traffic information system. The detected vehicle information is sent by a small helical antenna embedded in a plastic material and received by a 5/8 $\lambda$ long GP antenna for signal processing. In a relatively good weather condition, the detector operates at 24 GHz. But in a heavy rain condition, magnetometer is activated by automatic switching.

  • PDF

Algorithm for Detecting Direction of Single IF Scheme CW Radar Sensor (단일 IF 방식 CW 레이더 센서의 방향 검출 알고리즘)

  • Han, Byung-Hun;Shin, Hyun-Jun;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2905-2910
    • /
    • 2015
  • CW Radar Sensors can be categorized into Single and Dual by its IF output type. Dual IF type is used for detecting the direction of moving objects. However, Dual IF type has more complicated circuitry than Single IF type and higher cost due to more parts required. In this paper, we propose an algorithm for Single IF type CW radar sensors to detect the direction of moving objects. It performs FFT on signals created at IF output when an object moves and determines approach, stop and recede according to amplitude variations. In order to verify the algorithm, a function generator is used to create a virtual signal and confirmed that it accurately detects the directions according to amplitude variations.

Image Rejection Method with Circular Trajectory Characteristic of Single-Frequency Continuous-Wave Signal (단일 주파수 연속파 신호의 원형 궤도 특성을 이용한 영상 제거 방법)

  • Park, Hyung-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.148-156
    • /
    • 2009
  • This paper presents a new image rejection algorithm based on the analysis of the distortion of a single-frequency continuous-wave (CW) signal due to the I/Q mismatch. Existing methods estimated the gain mismatch and phase mismatch on RF receivers and compensated them However, this paper shows that the circular trajectory of a single-frequency CW signal is distorted elliptic-type trajectory due to the I/Q mismatch. Utilizing the analysis, we propose a I/Q mismatch compensation method. It has two processing steps. In the first processing step, the generated signal is rotated to align the major axis of the elliptic-type trajectory diagram with the x-axis. In the second processing step, the Q-channel signal in the regenerated signal is scaled to align the regenerated signal with the transmitted single-frequency CW signal. Simulation results show that a receiver using the proposed image rejection algorithm can achieve an image rejection ratio of more than 70dB. And, simulation results show that the bit error rate performances of receivers using the proposed image rejection algorithm are almost the same as those of conventional coherent demodulators, even in fading channels.

Investigation of Sound Pressure Detection of Fiber Optic Sensor in Transformer Oil According to TLS and CW Laser Source (TLS와 CW 광원에 따른 트랜스포머 오일 내에서 광섬유 센서의 음압 감지 특성 연구)

  • Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • To substitute TLS in the hybrid system which is combined with Sagnac interferometer and fiber bragg grating (FBG) it is necessary to investigate how the laser source (TLS and CW) and sensor material variate the response of fiber optic sensor. Two different hollow cylinder type mandrel materials are proposed which are PTFE and PTFE+carbon and 18 m optical fiber is wounded at the mandrel surface. CW laser source experiments had been done in the oil tank which is filled with transformer oil in the 1 kHz~20 kHz frequency range. Also Sagnac interferometer fiber optic sensor is combined with FBG called hybrid system and TLS used as a light source. Based on the experimental results PTFE sensor showed more higher magnitude of detection signal rather than carbon sensor and this result is agreement with the McMahon's theoretical results. Phase variation is inversely proportional to the elastic modulus of the mandrel material. In PTFE fiber sensor, tunable laser source showed more higher performance rather than CW case. Therefore, TLS fiber optic sensor can be applied to the hybrid system which is combined with Sagnac and FBG.

A Study on Interference Cancellation in a FM-CW Radar (FM-CW 레이다에서의 간섭 제거에 관한 연구)

  • Lee, Jong-Gil;Lee, Chang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1856-1863
    • /
    • 2012
  • Two separate antennas are usually adopted in high performance radar systems to achieve the high degree of isolation since the transmission and reception of signals cannot be separated in time. However, even though two spatially separated antennas are installed in the system, strong signals from a transmission antenna can cause the serious interference problem in a receiving antenna. These strong interference signals from the transmission antenna can cause serious problems in detection and analysis of much weaker echo signals which are reflected by small targets. Also the increased level of background noise power due to interference can cause the serious degradation of the system performance. Therefore, in this paper, the proper cancellation method is suggested and results are shown and analyzed for removal of strong interference and background noise power.

Image Technique of Surface Defects by Using Photoacoustic Signal Processing (광음향 신호처리를 이용한 표면결함의 영상 기술)

  • Yi, Chong-Ho;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.45-49
    • /
    • 1994
  • In this paper, photoacoustic image processing system was constructed by using 2W CW $CO_{2}$ laser of $10.6{\mu}m$ wavelength and PZT 5A acoustic transducer. Stainless steel of 5mm thickness was used as a sample in experiment. Three line cracks of $50{\mu}m$ in each width and depth were made by using plasma on the surface of the sample. Also, each gap among their lines was $200{\mu}m$ and $300{\mu}m$ in width. In the scan range of $2.2mm\times2mm$ including surface defects, a good image of $50{\mu}m$ resolution had been shown when modulation frequency of CW laser was 100Hz.

  • PDF

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

An Adaptive Digital Filter for Target Signal Enhancement in Active Sonar (능동 소나에서 표적 신호 향상을 위한 적응 디지털 필터)

  • 성하종;김기만;이충용;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.3-7
    • /
    • 2001
  • In active sonar system using CW signal, when the noise included reverberation has not the white characteristics, the CFAR detector estimates high threshold. Because of this reason it cannot detect targets and not resolve the closely spaced multiple targets. In order to solve these problems, we propose an adaptive reverberation rejection filter The proposed filter is composed of an adaptive filter and a fixed filter with its coefficients. To study the performance of the proposed adaptive reverberation rejection filter, various experiments have been performed under In moving active sonar environments. As a results, the proposed method has the improved performance than the previous methods.

  • PDF

Prototype Development of GPS Jammer Localization System for GPS based Air Navigation System (GPS기반 항공 항법 장비를 위한 전파위협원 위치추적 시작품 개발)

  • Kang, Jae Min;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom;Yeom, Chan Hong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • In this paper, a prototype of GPS jammer localization system for precise landing is developed. The jammer localization system consists of the four jamming signal receivers for collecting RF signal, one central tracking station for estimating jammer position, and one monitoring station for displaying estimated position on the map. In order to estimate jammer location TDOA and AOA algorithm are introduced, and the function and design parameters of the developed prototype are proposed. CW, DSSS, Swept CW jamming signals were generated and used. From the results, it can be confirmed that developed system meets the performance goal.

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.