• Title/Summary/Keyword: CVN test

Search Result 7, Processing Time 0.021 seconds

A Study on the Correlation between Advanced Small Punch Test and Charpy V-notch Test on X20CrMoV121 and 2.25Cr1Mo steels Weldment (X20CrMoV121강과 2.25Cr1Mo강 용접부의 ASP 시험과 CVN 충격 시험의 상관관계에 대한 연구)

  • Lee, Dong-Hwan;Kim, Hyoung-Sup
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.37-44
    • /
    • 2008
  • Charpy V-Notch test is commonly used to evaluate fracture toughness. However, since the region to be evaluated is limited to bulk material due to the specimen size required, individual evaluation of micro-structures on weldment is very difficult. In this study, ASP(Advanced Small Punch) test was carried out to evaluate material degradation and fracture toughness on the B.M, W.M and each micro-structures of HAZ for X20CrMoV121 and 2.25Cr1Mo steels with artificial aging time. In addition, to evaluate fracture toughness and material degradation of B.M and W.M of X20CrMoV121 steels with aging times, CVN (Charpy V-notch) test was performed. And then the correlation between ASP and CVN test on X20CrMoV121 steels was obtained. Furthermore, through this correlation, material degradation property of each micro-region of the HAZ in weldment, which was impossible to be evaluated by the CVN test, can be estimated and determined.

Study on Crashworthiness of Icebreaker Steel: Part I Steel Properties (쇄빙선 강재의 내충격 특성에 관한 실험적 연구: 제1부 강재 특성)

  • Noh, Myung-Hyun;Lee, Jae-Yik;Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.268-276
    • /
    • 2016
  • This paper presents a study on the crashworthiness of the scaled-down stiffened panels used on a Korean icebreaker. In order to validate the crashworthiness of the panels, this paper provides various mechanical properties such as the results of a CVN test, quasi-static tensile test, and high-speed tensile test at arctic temperatures. Two types of steels (EH32 and FH32) were chosen for the material tests. CVN tests revealed that the two steels were equivalent up to −60℃ in terms of their impact energy absorption capacity. However, the toughness of FH32 was significantly superior to that of EH32. EH32 showed slightly higher flow stresses at all temperature levels compared to FH32. The improvement ratios of the yield strengths, tensile strengths, plastic hardening exponents, etc. for FH32, which were obtained from quasi-static tensile tests, showed an apparent ascending tendency with a decrease in temperature. Dynamic tensile test results were obtained for the two temperatures levels of 20℃ and −60℃ with two plastic strain rate levels of 1 s−1 and 100 s−1. A closed form empirical formula proposed by Choung et al. (2011;2013) was shown to be effective at predicting the flow stress increase due to a strain rate increase.

A Study on Advanced Small Punch Test for Evaluation of Material Degradation in Weldment Microstructures (용접부 미세조직의 재질열화 평가를 위한 Advanced Small Punch 시험에 관한 연구)

  • 이동환;이송인;박종진;유효선
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2003
  • This research was aimed to evaluate the material degradation with various microstructures of X20CrMoV121 steel weldment by Advanced Small Punch(ASP) test. Due to the regional limitation on constitutive structures, the minimized loading ball(${\varphi}1.5mm$) and bore diameter of lower die(${\varphi}3mm$) were designed for the ASP test. The micro-hardness test was also performed to assess the mechanical properties with artificial aging heat treatment. Material degradation was estimated by ductile-brittle transition temperature(DBTT). The results obtained from the ASP test were compared with those from conventional small punch(CSP) test and CVN impact test for several weldment microstructures. It was found that the ASP test clearly showed the microstructural dependance on the material degradation in the weldment.

The KMTNet View of Variable Stars : Pulsation and Rotation of the EL CVn-type Eclipsing Binary J0247-25

  • Kim, Seung-Lee;Lee, Jae Woo;Lee, Chung-Uk;Lee, Yongseok;Lee, Dong-Joo;Hong, Kyeongsoo;Cha, Sang-Mok;Kim, Dong-Jin;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2018
  • EL CVn-type eclipsing binaries are composed of a massive A-type main-sequence primary star and a hotter B-type secondary one. These are worthy of particular attention because the secondary stars are rare objects to be extremely low-mass white dwarf precursors (ELM proto-WD) with the mass of ${\leq}0.2M_{\odot}$, evolving to higher effective temperatures and higher surface gravities. A few of them were discovered to show multi-periodic pulsations in one or both components. We monitored one of these rare and interesting objects, J0247-25 (=1SWASP J024743.37-251549.2), at two KMTNet sites of SAAO in South Africa and SSO in Australia. The observations were performed with the KMTNet 1.6m telescopes and pre-science 4K CCD cameras during the system test run from July to November 2014. Using the photometric data obtained for a total of 23 nights, we constructed well-defined eclipsing light curves in B/V-bands and derived absolute parameters (mass and radius, etc.) of each binary component. After subtracting model eclipsing curves from the data, we detected seven frequencies with 33~53 cycles per day (c/d) and identified them to be Delta Sct-type pulsations originated from the A-type primary component. Five frequencies were turned out to be excited by rotational splitting of non-radial pressure modes, enabled us to investigate rotational properties. We could not detect any frequency higher than 100 c/d, implying that pulsation amplitudes of the proto-WD secondary decrease greatly.

  • PDF

Fracture Properties of Mo-Ni-Cu Austempered Ductile Iron Cast in Permanent Mold with Austempering Temperature and Time (금형주조한 Mo-Ni-Cu계 구상흑연주철의 오스템퍼링 온도 및 시간에 따른 파괴특성)

  • Yi, Young-Sang;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.331-337
    • /
    • 1991
  • Various test specimens were prepared by austempering low alloyed Mo-Ni-Cu ductile iron blocks of high graphite nodule count at 270, 320 or $370^{\circ}C$ for 0.5, 1, 3 or 9hrs. Tensile test, CVN impact test and plane-strain fracture toughness test(compact tension specimen of 50mm W) were done for each heat treatment condition at room temperature. X-ray diffractometer and optical microscope were used to investigate the change of microstructure and relationships between microstructure and test results. The highest retained austenite volume percent at each austempering temperature was corresponded to the highest mechanical property. The highest elongation value of 17%, U.T.S. value of 1,600 MPa or $K_{IC}$ value of 90MPa${\surd}$m were reached at each optimum condition. The best heat treatment condition for fracture toughness were 3hrs' holding time combined with the austempering temperature of 270 and $320^{\circ}C$, and 1hr's of $370^{\circ}C$.

  • PDF

Characteristics of HAZ Toughness and Cold Crack Susceptibility of Heavy Thickness API 2W Gr. 50 Steel for Offshore Structures (해양구조물용 극후물 API 2W Gr. 50강의 HAZ 인성 및 저온균열 감수성)

  • 홍현욱;김충명
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • The evaluation of HAZ toughness and cold crack susceptibility of 90mm thickness API 2W Grade 50 steel has been made in accordance with API RP 2Z as preproduction qualification test to be certified as il steel supplier from Shell International E & P. It was shown that the steel has superior HAZ toughness; CTOD value for CGHAZ more than 1.5mm at -10$^{\circ}C$, CVN absorbed energy more than 150J at -60$^{\circ}C$. Additionally, no generation of cold cracks was observed at 0.7kJ/mm even without preheating condition. These excellent results are due to the extremely low hardenability in HAZ of the steel.

  • PDF

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.