• 제목/요약/키워드: CVD method

검색결과 400건 처리시간 0.027초

STD61 강의 내열특성향상을 위한 표면경화에 관한 연구 (A Study in the Heat Resistance Properties of STD61 Steel using the Surface Hardening Method)

  • 이구현
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.121-132
    • /
    • 1996
  • The carburising surface modification treatment of the die steel has been used for improving wear resistance and heat cycle strength of the die and preventing a pitting on the surface because the carbides are forming in the matrix during carburising. Generally, the hot forging die was used after quenching-tempering treatment or nitriding after quenching-tempering treatment. The nitriding after carburising on the surface of a hot die steel and a wear resistance die steels was suggested by SOUCHARD, JACQUOT. and BUVRON. This surface modification treatment improved the adhesive and abrasive wear resistance and friction coefficient. The process was introduced to the forging die of stainless steel, titanium alloy steel, alloy and medium carbon steel and the physical properties of the die after the treatment were improved. The surface hardening treatment of the nitriding, the carburising, the boriding, and TD process were used to improved the life time of the forging die. Also, the coating process of PVD, CVD and PCVD were used and the hard chromium plating was occasionally used. Therefore, this study analyzed the effects of the carburising time and the conditions of nitriding on STD61 steel. The case depth, the surface hardness, the forming carbide size and shape during overcarburising process on the die steel were also examined.

  • PDF

Graphene Coated Optical Fiber SPR Biosensor

  • Kim, Jang Ah;Hwang, Taehyun;Dugasani, Sreekantha Reddy;Kulkarni, Atul;Park, Sung Ha;Kim, Taesung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2014
  • In this study, graphene, the most attractive material today, has been applied to the wavelength-modulated surface plasmon resonance (SPR) sensor. The optical fiber sensor technology is the most fascinating topic because of its several benefits. In addition to this, the SPR phenomenon enables the detection of biomaterials to be label-free, highly sensitive, and accurate. Therefore, the optical fiber SPR sensor has powerful advantages to detect biomaterials. Meanwhile, Graphene shows superior mechanical, electrical, and optical characteristics, so that it has tremendous potential to be applied to any applications. Especially, grapheme has tighter confinement plasmon and relatively long propagation distances, so that it can enhance the light-matter interactions (F. H. L. Koppens, et al., Nano Lett., 2011). Accordingly, we coated graphene on the optical fiber probe which we fabricated to compose the wavelength-modulated SPR sensor (Figure 1.). The graphene film was synthesized via thermal chemical vapor deposition (CVD) process. Synthesized graphene was transferred on the core exposed region of fiber optic by lift-off method. Detected analytes were biotinylated double cross-over DNA structure (DXB) and Streptavidin (SA) as the ligand-receptor binding model. The preliminary results showed the SPR signal shifts for the DXB and SA binding rather than the concentration change.

  • PDF

나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용 (Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane)

  • 엄성운;강석희;홍석원
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

용접방식을 적용한 평면디스플레이용 화학기상증착기의 알루미늄 진공챔버 제조에 관한 연구 (Study on the Fabrication of Aluminum Vacuum Chamber of Chemical Vapor Depositor for Flat Display with Welding Method)

  • 정나겸;김훈식;김상준;장기범;장관섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.76-76
    • /
    • 2018
  • LCD 디스플레이 크기는 점차 대형화를 이루면서, 현재 LCD 디스플레이 크기는 3,000*3,320mm 크기까지 증가하여 개발이 활발이 이루어지고 있다. 디스플레이의 크기가 증가함에 따라 제조 장비의 크기도 증가되어야 하므로, LCD 디스플레이 CVD 공정에 사용되는 4,200*3,300mm 크기의 대형 Aluminium Vacuum Chamber 에 피막두께 $15{\mu}m$ 이상을 구현함과 동시에 두께 균일도가 우수하며 염수분무시험으로 168시간 이상의 내식성 확보가 가능한 양극산화조건 개발을 위하여 양극산화 피막의 각종 특성 평가를 실시하였다. 양극산화 피막 두께 측정은 와전류(Eddy Current)의 원리를 이용한 비파괴식 두께 측정법(ISO 2360, ASTM D 7091)을 적용하였으며, 염수분무시험 방법은 (KS D 9502)을 적용하였으며, HCl bubble stream 시험 방법은 HCl 5% 농도를 투명 아크릴 튜브에 채운후 bubble stream 을 종점으로 하여 평가를 실시하였으며, 열충격을 이용한 도금밀착성(KS D 0254), 도장접착력(ASTM D 3359) 등을 이용하여 전해조건 및 전해액 농도에 따른 피막 특성 비교평가를 실시하여 최적의 대형 Aluminium Vacuum Chamber 양극산화 전해 조건을 개발하여 4,200*3,300mm 크기의 대형 Aluminium Vacuum Chamber 제조를 목적으로 하였다.

  • PDF

열화학기상증착법에 의한 탄소나노소재의 합성 및 수소저장 특성 (Preparation of Carbon Nanomaterials by Thermal CVD and their Hydrogen Storage Properties)

  • 유형균;최원경;류호진;이병일
    • 한국세라믹학회지
    • /
    • 제38권10호
    • /
    • pp.867-870
    • /
    • 2001
  • 지지촉매로 Ni-graphite를 사용하고 ${C_2}{H_2}$를 이용한 열화학기상증착법에 의하여 탄소나노소재를 합성하였다. 합성된 시편은 SEM, TEM, 라만 분광법으로 분석하였으며, 수소저장특성은 전기화학적인 방법에 의하여 평가하였다. 탄소나노소재 합성시 메카노케미컬 처리과정을 거친 시편이 거치지 않은 시편에 비하여 탄소나노튜브의 순도가 우수하였다. 한편, 탄소나노소재를 정제함에 따라 수소저장특성이 크게 향상되었다.

  • PDF

극한환경 MEMS용 2 inch 3C-SiC 기판의 직접접합 특성 (Direct Bonding Characteristics of 2 inch 3C-SiC Wafers for MEMS in Hash Environments)

  • 정연식;류지구;김규현;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.387-390
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS(micro electro mechanical system) fields because of its application possibility in harsh environments. This paper presents pre-bonding techniques with variation of HF pre-treatment conditions for 2 inch SiC wafer direct bonding using PECVD(plasma enhanced chemical vapor deposition) oxide. The PECVD oxide was characterized by XPS(X-ray photoelectron spectrometer) and AFM(atomic force microscopy). The characteristics of the bonded sample were measured under different bonding conditions of HF concentration and an applied pressure. The bonding strength was evaluated by the tensile strength method. The bonded interface was analyzed by using IR camera and SEM(scanning electron microscope). Components existed in the interlayer were analyzed by using FT-IR(fourier transform infrared spectroscopy). The bonding strength was varied with HF pre-treatment conditions before the pre-bonding in the range of $5.3 kgf/cm^2$ to $15.5 kgf/cm^2$

  • PDF

DLC-coated Si-tip FEA 제조에 있어서 기판 상에 경사-회전 증착된 Al 희생층을 이용한 Gate누설 전류의 감소 (Decrease of Gate Leakage Current by Employing Al Sacrificial Layer Deposited on a Tilted and Rotated Substrate in the DLC-coated Si-tip FEA Fabrication)

  • 주병권;김영조
    • 마이크로전자및패키징학회지
    • /
    • 제7권3호
    • /
    • pp.27-29
    • /
    • 2000
  • Lift-off를 이용한 DLC-coated Si-tip FEA 제조에 있어서 gate 절연막의 측면에 DLC가 coating되는 것을 방지하기 위해 기판 상에 Al 희생층을 경사-회전 증착한 뒤 DLC를 coating하고, 다음으로 희생층을 식각하여 tip 이외의 DLC를 제거하는 방법을 제안하였다. 이러한 Al희생층을 이용한 lift-off공정에 의해 제조된 DLC-coated Si-tip FEA의 전류전압 특성과 전류 표동 특성을 조사하였으며, gate 누설 전류의 감소와 방출 전류의 안정성을 확인하였다.

  • PDF

열선 차단 필름용 니켈 착화합물의 합성과 특성 (Synthesis and Properties of Nickel Complexes for the Thermal Shielding Film)

  • 곽선엽;이태훈;손세모
    • 한국인쇄학회지
    • /
    • 제24권2호
    • /
    • pp.49-59
    • /
    • 2006
  • In this paper, a transparent film exposed the effect of heat cut-off, reveal as means of the prevention to wrong operation of parts of display and forgery of the credit card, also it will intercept rising of the temperature in interior of a room and car by diminish the influx of near-infrared ray wavelength of solar energy come from the window. As in the past a film which absorb a wavelength of $800{\sim}2500nm$ in near-infrared ray, manufactured in physical vapor deposition(PVD), chemical vapor deposition(CVD) to using ATO, ITO of inorganic materials or sputtering method. but it has lots of problem in manufacture. On the other hand, recently a paper said it easily form a transparent film to using organic dye. This paper show synthesis of many derivatives used in Ni-complex and then it investigate to optical property and durability of flim by make the transparent film.

  • PDF

Micro-Raman Spectroscopy and Cathodoluminescence Study of Cross-section of Diamond Film

  • Wang, Chun-Lei;Akimitsu Hatta;Jaihyung Won;Jaihyung Won;Nan Jinang;Toshimichi Ito;Takatomo Sasaki;Akio Hiraki;Zengsun Jin
    • The Korean Journal of Ceramics
    • /
    • 제3권1호
    • /
    • pp.1-4
    • /
    • 1997
  • Diamond film (24$\mu\textrm{m}$) were prepared by Microwave Plasma Chemical Vapor Deposition method from a reactive CO/H$_2$ mixtures. Micro-Raman spectroscopy and micro-cathodoluminescence study were carried out along the crosssection and correlated to SEM observation. CL image of cross-section was also investigated. Peak position, FWHM of Raman spectrum were determined using Lorentzing fit. The stress in this sample is 0.4~0.7 GPa compressive stress, and along the distance the compressive stress reduced. The Raman peak broadening is dominated by phonon life time reduction at grain boundaries and defect sites. Defects and impurities were mainly present inside the film, not at Silicon/Diamond interface.

  • PDF