• Title/Summary/Keyword: CUSTOM

Search Result 1,332, Processing Time 0.032 seconds

Design of Dead-end Membrane Module with Increased Permeate Flux by Natural Convection Instability Flow (자연대류 불안정 흐름에 의해 투과량을 증가시킨 전량여과 막모듈의 설계)

  • Kim, Gi-Jun;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • The permeate flux increments of a natural convection instability flow (NCIF) caused by the change of inclined angles ($0{\sim}180^{\circ}$) to gravity of the commercial membrane module were tested in the dead-end membrane filtration of BSA protein solution. The NCIF are more generated as the inclined angle increased from $0^{\circ}$ to $180^{\circ}$, and the occurred NCIF enhances permeate flux. However, the commercial module can only generate NCIF by completely removing the air gap in module. Since the custom design module designed in this study is permeated in a crossward direction ($90^{\circ}$), NCIF is always generated even if there is the air gap in module. The results of membrane filtration of BSA and dextran solutions using a custom design module showed that the flux in the crossward direction is increased to about 3.8 times for BSA solution and 1.8 times for dextran solution after two hours of operation due to the occurrence of NCIF. Also, NCIF generation is continued during 20 hours filtration of BSA solution, increasing the permeate flux to about 7.5 times. Since the custom design module with a permeation in the crossward direction and NCIF is always generated within the module, so it is possible to expect an increase in permeate flux due to the suppression of fouling formation, and thus to be utilized as a superb dead-end membrane module.