• Title/Summary/Keyword: CUPID

Search Result 72, Processing Time 0.024 seconds

COMPONENT AND SYSTEM MULTI-SCALE DIRECT-COUPLED CODE IMPLEMENTATION USING CUPID AND MARS CODES (CUPID 코드와 MARS 코드를 이용한 기기/계통 다중스케일 연계 해석 코드 구현)

  • Park, I.K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.89-97
    • /
    • 2016
  • In this study, direct code coupling, in which two codes share a single flow field, was conducted using 3-dimensional high resolution thermal hydraulics code, CUPID and 1-dimensional system analysis code, MARS. This approach provide the merit to use versatile capability of MARS for nuclear power plants and 3-dimensional T/H analysis capability of CUPID. Numerical Method to directly couple CUPID and MARS was described in this paper. The straight flow and manometer flow oscillation were calculated to verify conservation of coupled CUPID/MARS code in mass, momentum, and energy. This verification calculations indicates that the CUPID/MARS is coupled appropriately in numerical aspect and the coupled code can be applied to nuclear reactor thermal hydraulics after validation against integral transient experiments.

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

THE DEVELOPMENT AND ASSESSMENT STRATEGY OF A THERMAL HYDRAULICS COMPONENT ANALYSIS CODE (열수력 기기해석용 CUPID 코드 개발 및 평가 전략)

  • Park, I.K.;Cho, H.K.;Lee, J.R.;Kim, J.;Yoon, H.Y.;Lee, H.D.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.30-48
    • /
    • 2011
  • A three-dimensional thermal-hydraulic code, CUPID, has been developed for the analysis of transient two-phase flows at component scale. The CUPID code adopts a two-fluid three-field model for two-phase flows. A semi-implicit two-step numerical method was developed to obtain numerical solutions on unstructured grids. This paper presents an overview of the CUPID code development and assessment strategy. The governing equations, physical models, numerical methods and their improvements, and the systematic verification and validation processes are discussed. The code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER, are also presented.

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

THE CUPID CODE DEVELOPMENT AND ASSESSMENT STRATEGY

  • Jeong, J.J.;Yoon, H.Y.;Park, I.K.;Cho, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.636-655
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been being developed for the realistic analysis of transient two-phase flows in nuclear reactor components. The CUPID code development was motivated from very practical needs, including the analyses of a downcomer boiling, a two-phase flow mixing in a pool, and a two-phase flow in a direct vessel injection system. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations are solved over unstructured grids with a semi-implicit two-step method. This paper presents an overview of the CUPID code development and assessment strategy. It also presents the code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER.

NATURAL CIRCULATION ANALYSIS CONSIDERING VARIABLE FLUID PROPERTIES WITH THE CUPID CODE (CUPID 코드의 유체 물성치 변화를 고려한 자연대류 해석)

  • Lee, S.J.;Park, I.K.;Yoon, H.Y.;Kim, J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.14-20
    • /
    • 2015
  • Without electirc power to cool down the hot reactor core, passive systems utilizing natural circulation are becoming a big specialty of recent neculear systems after the severe accident in Fukusima. When we consider the natural circulation in a pool, thermal mixing phenomena may start from single phase circulation and can continue to two phase condition. Since the CUPID code, which has been developed for two-phase flow analysis, can deal with the phase transition phenomena, the CUPID would be pertinent to natural convection problems in single- and two-phase conditions. Thus, the CUPID should be validated against single- and two-phase natural circulation phenomena. For the first step of the validation process, this study is focused on the validation of single-phase natural circulation. Moreover, the CUPID code solves the fluid properties by the relationship to pressure and temperature from the steam table considering non-condensable gas effects, so that the effects from variable properties are included. Simple square thermal cavity problems are tested for laminar and turbulent conditions against numerical and experimental data. Throughout the investigation, it is found that the variable properties can affect the flow field in laminar condition, but the effect becomes weak in turbulence condition, and the CUPID code implementing steam table is capable of analyzing single phase natural circualtion phenomena.

Formation of Cupid's Bow and Vermilion Tubercle using Inferior-Based Lip Skin Flap in a Secondary Bilateral Cleft Lip Deformity

  • Cho, Byung Chae
    • Archives of Craniofacial Surgery
    • /
    • v.11 no.1
    • /
    • pp.19-22
    • /
    • 2010
  • The author presents a new method for the formation of Cupid's bow and the vermilion tubercle by using the inferior-based lip skin flap in a secondary bilateral cleft lip deformity. The length of the flap includes the entire length of the previous upper lip scar. Both skin flaps are elevated and turned down toward the central part of the vermilion. The distant portion of the turned-down skin flaps are deepithelialized and trimmed according to the new shape of Cupid's bow. The deepithelialized portions of both flaps are buried under the central vermilion mucosa in order to create the vermilion tubercle. The advantages of the proposed procedure are; provision of a more natural shape of Cupid's bow, the lip length is increased, and the vermilion tubercle can be reconstructed at the same time. Therefore, this technique is best suited for a case of a bilateral absence of Cupid's bow combined with a short lip in a sufficient upper lip of a bilateral cleft lip deformity. The proposed procedure, however, should be avoided in the tight upper lip because of a great deal of tension on the donor.

Benchmarking of the CUPID code to the ASSERT code in a CANDU channel

  • Eun Hyun Ryu;Joo Hwan Park;Yun Je Cho;Dong Hun Lee;Jong Yeob Jung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4338-4347
    • /
    • 2022
  • The CUPID code was developed and is continuously updated in KAERI. Verification and validation (V&V) is mainly done for light water reactors (LWRs). This paper describes a benchmarking of the detailed mesh level compared with sub-channel level for application to pressurized heavy water reactors (PHWRs), even though component scale comparison for the PHWR moderator system was done once before. We completed a sub-channel level comparison between the CUPID code and the ASSERT code and a CUPID code analysis. Because the ASSERT code has already been validated with numerous experiments, benchmarking with the ASSERT code will offer us more trust on the CUPID code. The target channel has high power and thus high pressure deformation. The high power channel tends to have a high possibility of critical heat flux (CHF), because a high void fraction and quality in channel exit region appear. In this research, after determining the reference grid and T/H model, we compared the sub-channel level results of the CUPID code with those of the ASSERT code.

Preliminary Analysis of the CANDU Moderator Thermal-Hydraulics using the CUPID Code (2상 유동 해석코드 CUPID를 이용한 CANDU 원자로 감속재 열수력 예비해석)

  • Park, Sang Gi;Lee, Jae Ryong;Yoon, Han Young;Kim, Hyoung Tae;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.419-426
    • /
    • 2012
  • A transient, three-dimensional, two-phase flow analysis code, CUPID, has been developed in KAERI. In this work, we performed a preliminary analysis using the CUPID code to investigate the thermal-hydraulic behavior of the moderator in the Calandria vessel of a CANDU reactor. At first, we validated the CUPID code using the three experiments that were performed at Stern Laboratories Inc. To avoid the complexity to generate computational mesh around the Calandria tube bundles, a porous media approach was applied for the region. The pressure drop in the porous media zone was modeled by an empirical correlation. The results of the calculations showed that the CUPID code can predict the mixed flow pattern of forced and natural convection inside the Calandria vessel very well. Thereafter, the analysis was extended to a two-phase flow condition. Also, the local maximum temperature in the Calandria vessel was plotted as a function of the injection flow rate, which may be utilized to predict the local subcooling margin.

Preliminary Thermal-Hydraulic Analysis of the CANDU Reactor Moderator Tank using the CUPID Code (CUPID 코드를 이용한 CANDU 원자로 칼란드리아 탱크 내부유동 열수력 예비 해석)

  • Choi, Su Ryong;Lee, Jae Ryong;Kim, Hyoung Tae;Yoon, Han Young;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.95-105
    • /
    • 2014
  • The CUPID code has been developed for a transient, three-dimensional, two-phase flow analysis at a component scale. It has been validated against a wide range of two-phase flow experiments. Especially, to assess its applicability to single- and two-phase flow analyses in the Calandria vessel of a CANDU nuclear reactor, it was validated using the experimental data of the 1/4-scaled facility of a Calandria vessel at the STERN laboratory. In this study, a preliminary thermal-hydraulic analysis of the CANDU reactor moderator tank using the CUPID code is carried out, which is based on the results of the previous studies. The complicated internal structure of the Calandria vessel and the inlet nozzle was modeled in a simplified manner by using a porous media approach. One of the most important factors in the analysis was found to be the modeling of the tank inlet nozzle. A calculation with a simple inlet nozzle modeling resulted in thermal stratification by buoyance, leading to a boiling from the top of the Calandria tank. This is not realistic at all and may occur due to the lack of inlet flow momentum. To improve this, a new nozzle modeling was used, which can preserve both mass flow and momentum flow at the inlet nozzle. This resulted in a realistic temperature distribution in the tank. In conclusion, it was shown that the CUPID code is applicable to thermal-hydraulic analysis of the CANDU reactor moderator tank using the cost-effective porous media approach and that the inlet nozzle modeling is very important for the flow analysis in the tank.