Journal of the Korean Association of Geographic Information Studies
/
v.19
no.3
/
pp.29-42
/
2016
Remote sensing allows acquisition of information across a large area without contacting objects, and has thus been rapidly developed by application to different areas. Thus, with the development of remote sensing, satellites are able to rapidly advance in terms of their image resolution. As a result, satellites that use remote sensing have been applied to conduct research across many areas of the world. However, while research on remote sensing is being implemented across various areas, research on data processing is presently insufficient; that is, as satellite resources are further developed, data processing continues to lag behind. Accordingly, this paper discusses plans to maximize the performance of satellite image processing by utilizing the CUDA(Compute Unified Device Architecture) Library of NVIDIA, a parallel processing technique. The discussion in this paper proceeds as follows. First, standard KOMPSAT(Korea Multi-Purpose Satellite) images of various sizes are subdivided into five types. NDVI(Normalized Difference Vegetation Index) is implemented to the subdivided images. Next, ArcMap and the two techniques, each based on CPU or GPU, are used to implement NDVI. The histograms of each image are then compared after each implementation to analyze the different processing speeds when using CPU and GPU. The results indicate that both the CPU version and GPU version images are equal with the ArcMap images, and after the histogram comparison, the NDVI code was correctly implemented. In terms of the processing speed, GPU showed 5 times faster results than CPU. Accordingly, this research shows that a parallel processing technique using CUDA Library can enhance the data processing speed of satellites images, and that this data processing benefits from multiple advanced remote sensing techniques as compared to a simple pixel computation like NDVI.
Journal of the Institute of Convergence Signal Processing
/
v.16
no.3
/
pp.83-89
/
2015
Connected component labeling (CCL) is a mandatory step in image segmentation where objects are extracted and uniquely labeled. CCL is a computationally expensive operation and thus is often done in parallel processing framework to reduce execution time. Various parallel CCL methods have been proposed in the literature. Among them are NSZ label equivalence (NSZ-LE) method, modified 8 directional label selection (M8DLS) method, HYBRID1 method, and HYBRID2 method. Soh et al. showed that HYBRID2 outperforms the others and is the best so far. In this paper we propose a new hybrid parallel CCL algorithm termed as HYBRID3 that combines selective four directional label search (S4DLS) with label backtracking (LB). We show that the average percentage speedup of the proposed over M8DLS is around 60% more than that of HYBRID2 over M8DLS for various kinds of images.
Kim, Jaehan;Shin, Hong-Chang;Cheong, Won-Sik;Bang, Gun
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.22-24
/
2011
본 논문에서는 3차원 디스플레이 시스템에서 다수의 중간 시점 영상을 실시간으로 생성할 수 있도록 GPU 기반의 고속 영상 합성기법을 제안하였으며 그에 대한 성능을 알아본다. 카메라의 기하 정보 및 참조 영상들의 깊이 정보를 이용하여 중간 시점 영상을 생성하였으며, 영상 합성 방법을 GPU에서 병렬 처리함으로써 고속화할 수 있었다. GPU를 효율적으로 다루기 위해 NVIDIA사의 CUDA(Compute Unified Device Architecture)$^TM$를 이용하였다. 제안한 기법은 CUDA의 SIMD(Single Instruction MUltiple Data) 구조를 사용하여 중간 영상 합성을 처리할 수 있도록 설계하였다. 본 논문은 고속 영상 합성에 중점을 두었고, 제안한 고속화 기법의 결과를 분석함으로써 다시점 3차원 디스플레이 시스템의 적용 가능성을 알아본다.
Proceedings of the Korea Multimedia Society Conference
/
2012.05a
/
pp.205-208
/
2012
Nowadays GPU (Graphic Process Unit) is not only used to show and render some images, but also for another computation. In this paper, we tried to use GPU to do some morphology operations to remove skull from axial MRI images. This skull removing process is an important step in brain segmentation because we would like to work with the brain only, without any skull on it. The result shows that simple morphology operations to remove skull has been successfully applied on MRI images, but there are still many parts that can be develop to get better images.
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.119-120
/
2012
GPU를 이용한 병렬 알고리즘은 어떤 메모리를 사용하는지에 따라 시스템의 전체적인 성능이 달라진다. 본 논문은 GPU 환경에서 실행되는 CUDA 프레임워크에서 병렬처리를 이용하여 문서 분류 시스템의 속도를 향상시키고자 할 때 메모리 로딩 시간이 전체적인 시스템의 성능에 미치는 영항을 연구하였다. 기존의 CPU 환경에서 구현했을 때와 비교하여 어느 정도의 성능 향상이 있었는지 실험하였으며 이전 연구에서 고려하지 않았던 메모리를 읽는데 걸리는 시간을 고려하여 현실적인 실행 시간을 비교하였다. 실험 결과에 의하면 CPU 에서 구현했을 때의 연산 속도보다 GPU의 텍스쳐 메모리를 사용하여 구현하였을 때 문서분류 성능이 향상되는 효과가 있음을 알 수 있었다.
Data assimilation is an initializing method for air quality forecasting such as PM10. It is very important to enhance the forecasting accuracy. Optimal interpolation is one of the data assimilation techniques. It is very effective and widely used in air quality forecasting fields. The technique, however, requires too much memory space and long execution time. It makes the PM10 air quality forecasting difficult in real time. We propose a fast optimal interpolation data assimilation method for PM10 air quality forecasting using a new kernel tridiagonal sparse matrix and CUDA massively parallel processing architecture. Experimental results show the proposed method is 5~56 times faster than conventional ones.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.44-46
/
2012
Depth map를 구하는 방법 중 많이 사용되어지는 방법으로 stripe 패턴을 이용하는 방법이 존재한다. 이 방법은 Pro-Cam 시스템을 이용하며 프로젝터로 조사한 패턴을 카메라로 촬영하여 원래의 패턴과 촬영된 패턴간의 기하학적인 관계를 구하여 depth map를 구하는 방법이다. 본 논문에서는 이와 같이 구조광을 이용하여 depth map 획득 시스템을 효과적으로 multi-thread를 사용하여 실시간 처리하는 것을 제안한다. 일반적으로 자주 사용되는 multi-threading 기법에는 CPU의 thread를 이용하는 OpenMP와 GPU의 thread를 이용하는 CUDA가 있다. 이 두 가지 기법은 수행하는데 차이점이 존재하기 때문에 상황에 따라 OpenMP가 더 좋은 효율을 보이는 부분이 있고 CUDA가 더 좋은 효율을 보이는 부분이 있다. 때문에 우리는 이 두 가지에 대해서 각 부분의 특성에 맞게 더 좋은 효율을 보이는 multi-thread를 이용하였다. 결과적으로 우리는 $1280{\times}800$의 영상에 대해 25fps 이상의 depth map를 획득하였다.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.4
/
pp.328-335
/
2011
GPU (Graphics Processing Units) is consists of SIMD (Single Instruction Multiple Data) architecture and provides fast parallel processing. A GA (Genetic Algorithm), which requires large computations, is implemented in GPU using CUDA (Compute Unified Device Architecture). Three kinds of execution models are presented according to different combinations of processing modules in GPU. Comparison experiments between GPU models and CPU are tested for a couple of benchmark problems by variation of population sizes and complexity of problem sizes.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.625-627
/
2018
브레이크 패드 제작 공정에서 문자 인식은 사람이 직접 인식하거나 컴퓨터 비전 기술의 역할이었다. 하지만 사람의 인식 오류나 잉크가 번진 문자같은 새로운 형태의 문자를 인식하지 못하는 비전 기술의 단점 등 많은 한계가 존재했다. 본 논문에서는 C/CUDA로 설계한 Single Shot Multibox Detector 기반 Inference Program 을 통해 더 정확한 문자인식 결과를 제시하고, CUDA를 이용한 향상된 연산속도를 통해 실시간 문자 인식이 가능하도록 하였다. 문자 인식 정확도는 약 96.6%로 기존 비전 기술보다 더 뛰어난 성능을 보였다.
A fast cell contour extraction method using CUDA parallel processing technique is presented. The cell contour extraction is one of important processes to analyze cell information in pathology. However, conventional sequential contour extraction methods are slow for a huge high-resolution medical image, so they are not adequate to use in the field. We developed a parallel morphology operation algorithm to extract cell contour more quickly. The algorithm can create an inner contour and fail to extract the contour from the concave part of the cell. We solved these problems by subdividing the contour extraction process into four steps: morphology operation, labeling, positioning and contour extraction. Experimental results show that the proposed method is four times faster than the conventional one.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.