• Title/Summary/Keyword: CUDA(CUDA)

Search Result 295, Processing Time 0.024 seconds

Parallel Processing of Satellite Images using CUDA Library: Focused on NDVI Calculation (CUDA 라이브러리를 이용한 위성영상 병렬처리 : NDVI 연산을 중심으로)

  • LEE, Kang-Hun;JO, Myung-Hee;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.29-42
    • /
    • 2016
  • Remote sensing allows acquisition of information across a large area without contacting objects, and has thus been rapidly developed by application to different areas. Thus, with the development of remote sensing, satellites are able to rapidly advance in terms of their image resolution. As a result, satellites that use remote sensing have been applied to conduct research across many areas of the world. However, while research on remote sensing is being implemented across various areas, research on data processing is presently insufficient; that is, as satellite resources are further developed, data processing continues to lag behind. Accordingly, this paper discusses plans to maximize the performance of satellite image processing by utilizing the CUDA(Compute Unified Device Architecture) Library of NVIDIA, a parallel processing technique. The discussion in this paper proceeds as follows. First, standard KOMPSAT(Korea Multi-Purpose Satellite) images of various sizes are subdivided into five types. NDVI(Normalized Difference Vegetation Index) is implemented to the subdivided images. Next, ArcMap and the two techniques, each based on CPU or GPU, are used to implement NDVI. The histograms of each image are then compared after each implementation to analyze the different processing speeds when using CPU and GPU. The results indicate that both the CPU version and GPU version images are equal with the ArcMap images, and after the histogram comparison, the NDVI code was correctly implemented. In terms of the processing speed, GPU showed 5 times faster results than CPU. Accordingly, this research shows that a parallel processing technique using CUDA Library can enhance the data processing speed of satellites images, and that this data processing benefits from multiple advanced remote sensing techniques as compared to a simple pixel computation like NDVI.

Parallel Connected Component Labeling Based on the Selective Four Directional Label Search Using CUDA

  • Soh, Young-Sung;Hong, Jung-Woo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.3
    • /
    • pp.83-89
    • /
    • 2015
  • Connected component labeling (CCL) is a mandatory step in image segmentation where objects are extracted and uniquely labeled. CCL is a computationally expensive operation and thus is often done in parallel processing framework to reduce execution time. Various parallel CCL methods have been proposed in the literature. Among them are NSZ label equivalence (NSZ-LE) method, modified 8 directional label selection (M8DLS) method, HYBRID1 method, and HYBRID2 method. Soh et al. showed that HYBRID2 outperforms the others and is the best so far. In this paper we propose a new hybrid parallel CCL algorithm termed as HYBRID3 that combines selective four directional label search (S4DLS) with label backtracking (LB). We show that the average percentage speedup of the proposed over M8DLS is around 60% more than that of HYBRID2 over M8DLS for various kinds of images.

The performance of fast view synthesis using GPU (GPU를 이용한 고속 영상 합성 기법의 성능)

  • Kim, Jaehan;Shin, Hong-Chang;Cheong, Won-Sik;Bang, Gun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.22-24
    • /
    • 2011
  • 본 논문에서는 3차원 디스플레이 시스템에서 다수의 중간 시점 영상을 실시간으로 생성할 수 있도록 GPU 기반의 고속 영상 합성기법을 제안하였으며 그에 대한 성능을 알아본다. 카메라의 기하 정보 및 참조 영상들의 깊이 정보를 이용하여 중간 시점 영상을 생성하였으며, 영상 합성 방법을 GPU에서 병렬 처리함으로써 고속화할 수 있었다. GPU를 효율적으로 다루기 위해 NVIDIA사의 CUDA(Compute Unified Device Architecture)$^TM$를 이용하였다. 제안한 기법은 CUDA의 SIMD(Single Instruction MUltiple Data) 구조를 사용하여 중간 영상 합성을 처리할 수 있도록 설계하였다. 본 논문은 고속 영상 합성에 중점을 두었고, 제안한 고속화 기법의 결과를 분석함으로써 다시점 3차원 디스플레이 시스템의 적용 가능성을 알아본다.

  • PDF

Morphology Operations on CUDA To Remove Skull on MRI Images

  • Izmantoko, Yonny S.;Choi, Heung-Kook
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.205-208
    • /
    • 2012
  • Nowadays GPU (Graphic Process Unit) is not only used to show and render some images, but also for another computation. In this paper, we tried to use GPU to do some morphology operations to remove skull from axial MRI images. This skull removing process is an important step in brain segmentation because we would like to work with the brain only, without any skull on it. The result shows that simple morphology operations to remove skull has been successfully applied on MRI images, but there are still many parts that can be develop to get better images.

  • PDF

Performance Enhancement of GPU Parallelism Algorithm including Memory Loading Time (메모리 로딩 시간을 고려한 GPU 병렬 알고리즘의 성능 개선 방안)

  • Bae, Byunggul;Lee, Jinwoo;Park, II-Nam;Im, Eun-Jin;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.119-120
    • /
    • 2012
  • GPU를 이용한 병렬 알고리즘은 어떤 메모리를 사용하는지에 따라 시스템의 전체적인 성능이 달라진다. 본 논문은 GPU 환경에서 실행되는 CUDA 프레임워크에서 병렬처리를 이용하여 문서 분류 시스템의 속도를 향상시키고자 할 때 메모리 로딩 시간이 전체적인 시스템의 성능에 미치는 영항을 연구하였다. 기존의 CPU 환경에서 구현했을 때와 비교하여 어느 정도의 성능 향상이 있었는지 실험하였으며 이전 연구에서 고려하지 않았던 메모리를 읽는데 걸리는 시간을 고려하여 현실적인 실행 시간을 비교하였다. 실험 결과에 의하면 CPU 에서 구현했을 때의 연산 속도보다 GPU의 텍스쳐 메모리를 사용하여 구현하였을 때 문서분류 성능이 향상되는 효과가 있음을 알 수 있었다.

  • PDF

Fast Data Assimilation using Kernel Tridiagonal Sparse Matrix for Performance Improvement of Air Quality Forecasting (대기질 예보의 성능 향상을 위한 커널 삼중대각 희소행렬을 이용한 고속 자료동화)

  • Bae, Hyo Sik;Yu, Suk Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.363-370
    • /
    • 2017
  • Data assimilation is an initializing method for air quality forecasting such as PM10. It is very important to enhance the forecasting accuracy. Optimal interpolation is one of the data assimilation techniques. It is very effective and widely used in air quality forecasting fields. The technique, however, requires too much memory space and long execution time. It makes the PM10 air quality forecasting difficult in real time. We propose a fast optimal interpolation data assimilation method for PM10 air quality forecasting using a new kernel tridiagonal sparse matrix and CUDA massively parallel processing architecture. Experimental results show the proposed method is 5~56 times faster than conventional ones.

Efficient Parallel Processing for Depth-Map Estimation in Real-Time (실시간 깊이 지도 획득을 위한 효율적인 병렬 처리)

  • Cho, Chil-Suk;Jun, Ji-In;Choo, Hyun-Gon;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.44-46
    • /
    • 2012
  • Depth map를 구하는 방법 중 많이 사용되어지는 방법으로 stripe 패턴을 이용하는 방법이 존재한다. 이 방법은 Pro-Cam 시스템을 이용하며 프로젝터로 조사한 패턴을 카메라로 촬영하여 원래의 패턴과 촬영된 패턴간의 기하학적인 관계를 구하여 depth map를 구하는 방법이다. 본 논문에서는 이와 같이 구조광을 이용하여 depth map 획득 시스템을 효과적으로 multi-thread를 사용하여 실시간 처리하는 것을 제안한다. 일반적으로 자주 사용되는 multi-threading 기법에는 CPU의 thread를 이용하는 OpenMP와 GPU의 thread를 이용하는 CUDA가 있다. 이 두 가지 기법은 수행하는데 차이점이 존재하기 때문에 상황에 따라 OpenMP가 더 좋은 효율을 보이는 부분이 있고 CUDA가 더 좋은 효율을 보이는 부분이 있다. 때문에 우리는 이 두 가지에 대해서 각 부분의 특성에 맞게 더 좋은 효율을 보이는 multi-thread를 이용하였다. 결과적으로 우리는 $1280{\times}800$의 영상에 대해 25fps 이상의 depth map를 획득하였다.

  • PDF

GPU Implementation Techniques of Genetic Algorithm and Comparative Studies (유전 알고리즘의 GPU 구현 기법 및 비교 연구)

  • Hyeon, Byeong-Yong;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.328-335
    • /
    • 2011
  • GPU (Graphics Processing Units) is consists of SIMD (Single Instruction Multiple Data) architecture and provides fast parallel processing. A GA (Genetic Algorithm), which requires large computations, is implemented in GPU using CUDA (Compute Unified Device Architecture). Three kinds of execution models are presented according to different combinations of processing modules in GPU. Comparison experiments between GPU models and CPU are tested for a couple of benchmark problems by variation of population sizes and complexity of problem sizes.

Real Time Word Detecting Inference Program for Windows Through Single Shot Multibox Detector (Single Shot Multibox Detector를 통한 윈도우즈용 실시간 문자 인식 Inference Program 개발)

  • Lee, Da-Min;Wang, Jin-Yeong;Shin, Yeong-Jin;Nam, Dong-Yun;Lee, Sang-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.625-627
    • /
    • 2018
  • 브레이크 패드 제작 공정에서 문자 인식은 사람이 직접 인식하거나 컴퓨터 비전 기술의 역할이었다. 하지만 사람의 인식 오류나 잉크가 번진 문자같은 새로운 형태의 문자를 인식하지 못하는 비전 기술의 단점 등 많은 한계가 존재했다. 본 논문에서는 C/CUDA로 설계한 Single Shot Multibox Detector 기반 Inference Program 을 통해 더 정확한 문자인식 결과를 제시하고, CUDA를 이용한 향상된 연산속도를 통해 실시간 문자 인식이 가능하도록 하였다. 문자 인식 정확도는 약 96.6%로 기존 비전 기술보다 더 뛰어난 성능을 보였다.

Improved Parallelization of Cell Contour Extraction Algorithm (개선된 세포 외곽선 추출 알고리즘의 병렬화)

  • Yu, Suk Hyun;Cho, Woo Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.740-747
    • /
    • 2017
  • A fast cell contour extraction method using CUDA parallel processing technique is presented. The cell contour extraction is one of important processes to analyze cell information in pathology. However, conventional sequential contour extraction methods are slow for a huge high-resolution medical image, so they are not adequate to use in the field. We developed a parallel morphology operation algorithm to extract cell contour more quickly. The algorithm can create an inner contour and fail to extract the contour from the concave part of the cell. We solved these problems by subdividing the contour extraction process into four steps: morphology operation, labeling, positioning and contour extraction. Experimental results show that the proposed method is four times faster than the conventional one.