• Title/Summary/Keyword: CUAZ

Search Result 11, Processing Time 0.013 seconds

Evaluation of the Potential of Wood Preservatives Formulated with Okara (두부비지를 이용한 목재 방부제의 사용가능성 평가)

  • Kim, Ho-Yong;Choi, In-Gyu;Ahn, Sye-Hee;Oh, Sei-Chang;Hong, Chang-Young;Min, Byeong-Cheol;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.110-123
    • /
    • 2008
  • The use of CCA as a wood preservative was recently inhibited due to its environmental pollution and human harmfulness. Instead of CCA, copper azole (CuAz) and alkaline copper quaternary (ACQ) have been used as alternative wood preservatives, but the price of the preservatives is much more expensive than that of CCA. As a substitute for high-priced CuAz and ACQ, environmentally friendly wood preservatives were formulated with okara, which is an organic waste from the production of tofu. Prior to formulating the preservatives, okara was hydrolyzed by three levels of sulfuric acid concentration (1, 2.5 and 5%) to easily penetrate the effective components of the preservatives into wood blocks. Final preservative solutions were formulated with the hydrolyzed okara and metal salts, such as copper sulfate, copper chloride and borax. The preservatives were treated into wood blocks by vacuum-pressure method to measure the treatability of the preservatives, and the treated wood blocks were placed in hot water for three days to measure the leachability of the preservatives. The effective components of the preservatives might be successfully penetrated into wood blocks through the uses of hydrolyzed okara and ammonia water. However, the leached amount of effective components was increased as the concentration of acid used for the hydrolysis of okara increased. The treatability and leachability of the preservatives were not affected by hydrolysis temperature but negatively affected by the addition of borax. Based on the results above, the optimal conditions for formulating okara-based wood preservatives cost-effectively and environmentally might be 1% acid hydrolysis of okara and the use of $CuCl_2$ as a metal salt. In addition, the treatability and leachability of okara-based wood preservatives were superior or no differences comparing with those of CuAz. Therefore, it is concluded that okara-based wood preservatives might have a potential to be used as an environmentally friendly wood preservative.