• Title/Summary/Keyword: CTV-T36

Search Result 2, Processing Time 0.018 seconds

Sequence Analysis of the Coat Protein Gene of Citrus Tristeza Virus Isolated form Cheju Island

  • Park, Hyoun-Hyang;Kim, Dae-Hyun;Hyun, Woo-Taek;Moon, Doo-Khil;Koh, Young-jin;Park, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • Citrus tristeza virus (CTV) is the causal agent of one of the most important diseases of citrus. Recently, CTV has been detected in Cheju Island by ELISA. The coat protein (CP) gene of CTV isolated form Cheju Island was cloned by RT-PCR and the nucleotide was analyzed in this study. Citrus leaves were collected from trees showing decline symptoms from various region of Cheju Island in the summer of 1998 and 1999. The CP gene open reading frame is composed of 670 nucleotides and encodes a polypeptide of 223 amono acids. Sequence analysis the CP gene revealed that two CTV strains present in Cheju Island. Viruses collected form Sogwipo area and Cheju City area in 1999 ahowed 91-93% nucleotide sequence homology with CTV T36 strain. Viruses collected form Cheju City area in 1999 and Sogwipo City in 1998 showed 94-98% nucleotide sequence homology with CTV SY568 strain. A efficient viral RNA extraction methods was developed by modifying procedure for animal virus RNA purification methods and PCR product was detected form one tenth of RNA purified from as small as 45 mg fresh or frozen tissue.

  • PDF

The evaluation of the feasibility about prostate SBRT by analyzing interfraction errors of internal organs (분할치료간(Interfraction) 내부 장기 움직임 오류 분석을 통한 전립선암의 전신정위적방사선치료(SBRT) 가능성 평가)

  • Hong, soon gi;Son, sang joon;Moon, joon gi;Kim, bo kyum;Lee, je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • Purpose : To figure out if the treatment plan for rectum, bladder and prostate that have a lot of interfraction errors satisfies dosimetric limits without adaptive plan by analyzing MR image. Materials and Methods : This study was based on 5 prostate cancer patients who had IMRT(total dose: 70Gy) Using ViewRay MRIdian System(ViewRay, ViewRay Inc., Cleveland, OH, USA) The treatment plans were made on the same CT images to compare with the plan quality according to adaptive plan, and the Eclipse(Ver 10.0.42, Varian, USA) was used. After registrate the 5 treatment MR images to the CT images for treatment plan to analyze the interfraction changes of organ, we measured the dose volume histogram and the changes of the absolute volume for each organ by appling the first treatment plan to each image. Over 5 fractions, the total dose for PTV was $V_{36.25}$ Gy $${\geq_-}$$ 95%. To confirm that the prescription dose satisfies the SBRT dose limit for prostate, we measured $V_{100%}$, $V_{95%}$, $V_{90%}$ for CTV and $V_{100%}$, $V_{90%}$, $V_{80%}$ $V_{50%}$ of rectum and bladder. Results : All dose average value of CTV, rectum and bladder satisfied dose limit, but there was a case that exceeded dose limit more than one after analyzing the each image of treatment. After measuring the changes of absolute volume comparing the MR image of the first treatment plan with the one of the interfraction treatment, the difference values were maximum 1.72 times at rectum and maximum 2.0 times at bladder. In case of rectum, the expected values were planned under the dose limit, on average, $V_{100%}=0.32%$, $V_{90%}=3.33%$, $V_{80%}=7.71%$, $V_{50%}=23.55%$ in the first treatment plan. In case of rectum, the average of absolute volume in first plan was 117.9 cc. However, the average of really treated volume was 79.2 cc. In case of CTV, the 100% prescription dose area didn't satisfy even though the margin for PTV was 5 mm because of the variation of rectal and bladder volume. Conclusion : There was no case that the value from average of five fractions is over the dosimetric limits. However, dosimetric errors of rectum and bladder in each fraction was significant. Therefore, the precise delivery is needed in case of prostate SBRT. The real-time tracking and adaptive plan is necessary to meet the precision delivery.

  • PDF