Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.1
/
pp.64-69
/
2022
Commercialization of public technology is the transfer of government-led scientific and technological innovation and R&D results to the private sector, and is recognized as a key achievement driving economic growth. Therefore, in order to activate technology transfer, various machine learning methods are being studied to identify success factors or to match public technology with high commercialization potential and demanding companies. However, public technology commercialization data is in the form of a table and has a problem that machine learning performance is not high because it is in an imbalanced state with a large difference in success-failure ratio. In this paper, we present a method of utilizing CTGAN to resolve imbalances in public technology data in tabular form. In addition, to verify the effectiveness of the proposed method, a comparative experiment with SMOTE, a statistical approach, was performed using actual public technology commercialization data. In many experimental cases, it was confirmed that CTGAN reliably predicts public technology commercialization success cases.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.327-330
/
2023
머신러닝과 딥러닝 모델의 사용이 급증함에 따라 충분한 데이터 확보의 중요성이 부각되고 있다. 이에 따라 생성 모델을 통한 데이터 증강 기술이 주목받고 있으나, 증강 데이터를 활용했을 때 학습의 성능 분석은 아직 부족하다. 따라서 본 연구에서는 데이터 증강 시나리오에 따라 증강 비율별 합성 데이터의 유용성을 조사하고자 한다. 본 연구에서는 테이블 데이터를 증강하는 것에 초점을 맞추었으며, 이를 위해 테이블 데이터를 합성할 때 유용한 성능을 보이는 딥러닝 모델 CTGAN을 활용하였다. 실험에서 데이터를 증강하는 두 가지 다른 시나리오를 고려한 결과, 두 시나리오에서 모두 실험에서 설정한 증강 비율까지의 합성 데이터가 유용한 결과를 보임을 확인할 수 있었다.
A field velocity resistivity probe (FVRP) can measure compressional waves, shear waves and electrical resistivity in boreholes. The objective of this study is to perform the soil classification through a machine learning technique through elastic wave velocity and electrical resistivity measured by FVRP. Field and laboratory tests are performed, and the measured values are used as input variables to classify silt sand, sand, silty clay, and clay-sand mixture layers. The accuracy of k-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM), selected to perform classification and optimize the hyperparameters, is evaluated. The accuracies are calculated as 0.76, 0.91, 0.94, and 0.88 for KNN, NB, RF, and SVM algorithms, respectively. To increase the amount of data at each soil layer, the synthetic minority oversampling technique (SMOTE) and conditional tabular generative adversarial network (CTGAN) are applied to overcome imbalance in the dataset. The CTGAN provides improved accuracy in the KNN, NB, RF and SVM algorithms. The results demonstrate that the measured values by FVRP can classify soil layers through three kinds of data with machine learning algorithms.
Journal of the Korea Society of Computer and Information
/
v.28
no.11
/
pp.29-42
/
2023
In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.
Gene expression data can be utilized in various studies, including the prediction of disease prognosis. However, there are challenges associated with collecting enough data due to cost constraints. In this paper, we propose a gene expression data generation model based on Conditional Variational Autoencoder. Our results demonstrate that the proposed model generates synthetic data with superior quality compared to two other state-of-the-art models for gene expression data generation, namely the Wasserstein Generative Adversarial Network with Gradient Penalty based model and the structured data generation models CTGAN and TVAE.
Journal of information and communication convergence engineering
/
v.19
no.4
/
pp.228-233
/
2021
In this study, we analyze the credit information (loan, delinquency information, etc.) of individual business owners to generate voluminous training data to establish a bankruptcy prediction model through a partial synthetic training technique. Furthermore, we evaluate the prediction performance of the newly generated data compared to the actual data. When using conditional tabular generative adversarial networks (CTGAN)-based training data generated by the experimental results (a logistic regression task), the recall is improved by 1.75 times compared to that obtained using the actual data. The probability that both the actual and generated data are sampled over an identical distribution is verified to be much higher than 80%. Providing artificial intelligence training data through data synthesis in the fields of credit rating and default risk prediction of individual businesses, which have not been relatively active in research, promotes further in-depth research efforts focused on utilizing such methods.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.370-372
/
2023
신용카드 부정 사용은 고객 및 기업의 신용과 재산에 막대한 손실을 미치고 있다. 이에 따라 금융사들은 이상금융거래탐지시스템을 도입하였으나 이상 거래 발생 여부를 지속적으로 모니터링하고 있기 때문에 시스템 유지에 많은 비용이 따른다. 따라서 본 논문에서는 컴퓨팅 리소스를 절약함과 동시에 성능 개선 효과를 보인 신용카드 이상 거래 탐지 알고리즘을 제안한다. CTGAN 을 활용하여 정상 거래와 이상 거래의 비율을 일부 완화하였고 XAI 기법인 SHAP 를 활용하여 유의미한 속성값을 선택하였다. 이것을 기반으로 LSTM Autoencoder를 사용하여 이상데이터를 탐지하였다. 그 결과 전통적인 비지도 학습 기법에 비해 제안 알고리즘이 우수한 성능을 보였음을 확인하였다.
Climate change has emerged as a global problem, with frequent temperature increases, droughts, and floods, and it is predicted that it will have a great impact on the characteristics and productivity of crops. Cnidium officinale is used not only as traditionally used herbal medicines, but also as various industrial raw materials such as health functional foods, natural medicines, and living materials, but productivity is decreasing due to threats such as continuous crop damage and climate change. Therefore, this paper proposes a model that can predict the physiologically active ingredient index according to the climate change scenario of Cnidium officinale, a representative medicinal crop vulnerable to climate change. In this paper, data was first augmented using the CTGAN algorithm to solve the problem of data imbalance in the collection of environment information, physiological reactions, and physiological active ingredient information. Column Shape and Column Pair Trends were used to measure augmented data quality, and overall quality of 88% was achieved on average. In addition, five models RF, SVR, XGBoost, AdaBoost, and LightBGM were used to predict phenol and flavonoid content by dividing them into ground and underground using augmented data. As a result of model evaluation, the XGBoost model showed the best performance in predicting the physiological active ingredients of the sacrum, and it was confirmed to be about twice as accurate as the SVR model.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.5
/
pp.75-86
/
2022
This study aims to solve the problem of class imbalance in numerical data by using a deep learning-based Variational AutoEncoder and to improve the performance of the learning model by augmenting the learning data. We propose 'D-VAE' to artificially increase the number of records for a given table data. The main features of the proposed technique go through discretization and feature selection in the preprocessing process to optimize the data. In the discretization process, K-means are applied and grouped, and then converted into one-hot vectors by one-hot encoding technique. Subsequently, for memory efficiency, sample data are generated with Variational AutoEncoder using only features that help predict with RFECV among feature selection techniques. To verify the performance of the proposed model, we demonstrate its validity by conducting experiments by data augmentation ratio.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.