• Title/Summary/Keyword: CTE

Search Result 301, Processing Time 0.027 seconds

Effect of a 3C-SiC buffer layer on SAW properties of AlN films (3C-SiC 버퍼층이 AlN 박막형 SAW 특성에 미치는 영향)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.235-235
    • /
    • 2009
  • This paper describes the influence of a polycrystalline (poly) 3C-SiC buffer layer on the surface acoustic wave (SAW) properties of poly aluminum nitride (AlN) thin films by comparing the center frequency, insertion loss, the electromechanical coupling coefficient ($k^2$), andthetemperaturecoefficientoffrequency(TCF) of an IDT/AlN/3C-SiC structure with those of an IDT/AlN/Si structure, The poly-AlN thin films with an (0002)-preferred orientation were deposited on a silicon (Si) substrate using a pulsed reactive magnetron sputtering system. Results show that the insertion loss (21.92 dB) and TCF (-18 ppm/$^{\circ}C$) of the IDT/AlN/3C-SiC structure were improved by a closely matched coefficient of thermal expansion (CTE) and small lattice mismatch (1 %) between the AlN and 3C-SiC. However, a drawback is that the $k^2(0.79%)$ and SAW velocity(5020m/s) of the AlN/3C-SiC SAW device were reduced by appearing in some non-(0002)AlN planes such as the (10 $\bar{1}$ 2) and (10 $\bar{1}$ 3) AlN planes in the AlN/SiC film. Although disadvantages were shown to exist, the use of the AlN/3C-SiC structure for SAW applications at high temperatures is possible. The characteristics of the AlN thin films were also evaluated using FT-IR spectra, XRD, and AFM images.

  • PDF

Health Risk Assessment by Potential Exposure of NO2 and VOCs in Apartments (공동주택내 이산화질소(NO2) 및 휘발성유기화합물(VOCs) 노출에 따른 건강 위해성 평가)

  • Jung, Soon-Won;Yang, Won-Ho;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.242-249
    • /
    • 2007
  • Indoor air quality has become a topic of interest and concern. Especially changes in construction design and the increased use of synthetic products may result in an increasing of complaints and health effects about the quality of indoor air at home. In this study, nitrogen dioxide($NO_2$) and volatile organic compounds(VOCs) within new and established apartments on the basis of 4 years of building year were measured every 3 days consecutively during 60 days. We selected each 10 house in Seoul, Asan and Daegu, respectively, and produced risk numbers for hazard quotients, and predicted increases in incidence of cancer. The calculations were made for the adult with default exposure values and also made for a worst case scenario using Monte-Carlo simulation as describing the reasonable exposure(RME). Mean of Monte carlo analysis by benzene, in the construction under 4 years (male: $9.2{\times}10^{-5}$, female: $1.0{\times}10^{-4}$) and over 4 years (male: $6.8{\times}10^{-5}$, female: $8.3{\times}10^{-5}$) exceeded $10^{-6}$ of permitted standards in US EPA, RME of Monte carlo analysis. In construction under 4 yews (male: $9.9{\times}10^{-3}$, female: $9.6{\times}10^{-3}$) and over 4 years (male: $9.8{\times}10^{-3}$, female: $7.8{\times}10^{-3}$) exceeded $10^{-4}$ of maximum permitted standards in US EPA. The hazard index of non-carcinogenic pollutants by nitrogen dioxide, toluene, m,p-xylene and o-xylene, both male and female in apartment constructed under 4 yews and over 4 years was found less than the permitted standards of hazardous health effects in CTE. Significant cancer risks and non-cancer hazard quotients were predicted in under 4 yews of building year.

Property Estimation of Functionally Graded Materials Between M2 Tool Steel and Cu Fabricated by Powder Metallurgy (분말야금으로 제작된 M2 공구강과 Cu 간 기능성 경사 복합재의 물성 평가)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.953-958
    • /
    • 2014
  • The use of functionally graded materials (FGMs) may enhance thermal conductivity without reducing the desired strength in many applications such as injection molds embedding conformal cooling channels and cutting tools with heat sinks (or cooling devices). As a fundamental study for cutting tools having FGM heat sinks between M2 tool steel and Cu, six FGM specimens (M2 and Cu powders were premixed such that the relative compositions of M2 and Cu were 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%) were fabricated by powder metallurgy in this study. The cross sections of these specimens were observed by optical microscopy, and then the material properties (such as thermal conductivity, specific heat, and coefficient of thermal expansion) related to heat transfer were measured and analyzed.

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.

A Technology Readiness Level (TRL) Management using the Systems Engineering Tool for the Space Launch Vehicle (시스템엔지니어링 전산관리도구를 활용한 우주발사체 기술완성도(TRL) 관리)

  • Jang, Jun Youk;Kwon, Byung Chan;Lim, Chang Young;Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • The KSLV-II project with high difficulties technically requires thorough technical management during long-term life cycle more than 10 years for launching into space. The TRL is a quantitative indicator developed by NASA widely used all over the world to measure technology maturity of a system development objectively and consistently. The TRL is also used to make sure technology level and to establish a future direction in the KSLV-II project. The TRL has advantage enable to identify a technology level through quantitative indicators. However, it takes a lot of efforts such as trials and errors, time and cost to apply it to the project considering the project environments, and stakeholder needs. These include not only to establish TRL management plan from ideal, conceptual and abstractive standards/guidelines such as NASA's, but also to construct TRL management environment enable to apply and manage harmoniously. In the KSLV-II project, it is required to figure out current technology level and technology development trend in the future, to access conveniently, to share related data in real time, and to update periodically for the comprehensive TRL management. From the reason above, the TRL management environment was built by using the systems engineering tool already has been used for other system management data such as requirements in the project. It also could be accomplished a practical management basis of systems engineering from the traceability among system management data including TRL. In this paper, case study results are introduced to manage the TRL for the space launch vehicle using the systems engineering tool in the KSLV-II project.

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.

Characterization of Colorless and Transparent Polyimide Films Synthesized with Various Amine Monomers (다양한 아민 단량체로 합성한 무색투명 폴리이미드 필름 특성)

  • Choi, Il-Hwan;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.480-484
    • /
    • 2010
  • A series of poly(amic acid)s(PAAs) was prepared by reacting 4,4'-(4,4'-isopropylidenediphenoxy) bis(phthalic anhydride)(BPADA) as the anhydride monomer and 2,2'-bis(trifluoromethyl) benzidine (TFB), bis(3-aminophenyl)sulfone (APS), 4,4'-methylenebis-(2-methylcyclohexylamine) (MMCA), or bis[4-(3-aminophenoxy) phenyl] sulfone (BAPS) as the amine monomer with 5 mol% melamine in N,N-dimethylacetamide (DMAc). Colorless and transparent polyimide (PI) films were obtained by casting the PAAs at various heat treatment temperatures. The thermo-mechanical properties and optical transparency of the PI films were investigated. The thermal properties of the PI films were examined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA), and their optical transparency were measured by spectrophotometry. The coefficient of thermal expansion (CTE) and yellow index (YI) values of all samples were in the range of $48.53-64.24ppm/^{\circ}C$ and < 3.0, respectively.

Inhibitory Effects of Marine Natural Products on Melanogenesis in B16 Melanoma Cells (B16 멜라닌 세포에서 해양소재 추출물의 멜라닌 생성 저해 효과)

  • Lee, Chan;Jang, Jung-Hee;Ahn, Eun-Mi;Park, Chan-Ik
    • The Korea Journal of Herbology
    • /
    • v.27 no.4
    • /
    • pp.73-80
    • /
    • 2012
  • Objectives : Under normal condition melanin protects the skin from extracellular stimuli including ultraviolet (UV)-induced oxidative skin damages, but excess production and accumulation of melanin can induce hyperpigmentation causing esthetic problems. Therefore, in this study we tried to search for natural skin whitening materials from marine natural resources. Methods : Water and ethanol extracts of marine natural resources were prepared from Porphyra thalli (PT), Laminariae thallus (LT), Ostreae concha (OC), Sargassum thallus (ST), Undaria thallus (UT), Codium thalli (CT), Enteromorpha thalli (ET), Syngnathoides biaculeatus (SB), and Hippocampus coronatus (Hc). Their effects against UVB and ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH)-induced melanogenesis were investigated based on melanin formation in B16 mouse melanoma cells. The mRNA and protein expression of enzymes involved in the melanogenic process were further examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Results : Water extract of Ostreae concha (OCW/E) effectively inhibited UVB and ${\alpha}$-MSH-induced melanin production in B16 melanocytes, which seemed to be mediated by inhibition of mRNA expression of tyrosinase and tyrosinase-related protein 1 (TRP-1). In another experiment, ethanol extracts from Porphyra thalli (PTE/E), Laminariae thallus (LTE/E), Sargassum thallus (STE/E), Undaria thallus (UTE/E), Codium thalli (CTE/E), Syngnathoides biaculeatus (SBE/E), and Hippocampus coronatus (HcE/E) significantly suppressed UVB and ${\alpha}$-MSH-induced melanin formation. Furthermore, ethylacetate fraction isolated form LTE/E (LTE/EEt) decreased UVB and ${\alpha}$-MSH-elevated extracellular melanin levels via inhibition of tyrosinase protein expression. Conclutions : These results suggest that marine natural resources such as Porphyra thalli, Laminariae thallus, Ostreae concha, Sargassum thallus, Undaria thallus, Codium thalli, Syngnathoides biaculeatus and Hippocampus coronatus have anti-melanogenic effects, thereby exhibiting high potentials to be utilized as one of the ingredients for the development of new whitening functional cosmetics.

Flip Chip Assembly Using Anisotropic Conductive Adhesives with Enhanced Thermal Conductivity

  • Yim, Myung-Jin;Kim, Hyoung-Joon;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the development of new anisotropic conductive adhesives with enhanced thermal conductivity for the wide use of adhesive flip chip technology with improved reliability under high current density condition. The continuing downscaling of structural profiles and increase in inter-connection density in flip chip packaging using ACAs has given rise to reliability problem under high current density. In detail, as the bump size is reduced, the current density through bump is also increased. This increased current density also causes new failure mechanism such as interface degradation due to inter-metallic compound formation and adhesive swelling due to high current stressing, especially in high current density interconnection, in which high junction temperature enhances such failure mechanism. Therefore, it is necessary for the ACA to become thermal transfer medium to improve the lifetime of ACA flip chip joint under high current stressing condition. We developed thermally conductive ACA of 0.63 W/m$\cdot$K thermal conductivity using the formulation incorporating $5 {\mu}m$ Ni and $0.2{\mu}m$ SiC-filled epoxy-bated binder system to achieve acceptable viscosity, curing property, and other thermo-mechanical properties such as low CTE and high modulus. The current carrying capability of ACA flip chip joints was improved up to 6.7 A by use of thermally conductive ACA compared to conventional ACA. Electrical reliability of thermally conductive ACA flip chip joint under current stressing condition was also improved showing stable electrical conductivity of flip chip joints. The high current carrying capability and improved electrical reliability of thermally conductive ACA flip chip joint under current stressing test is mainly due to the effective heat dissipation by thermally conductive adhesive around Au stud bumps/ACA/PCB pads structure.

  • PDF