• 제목/요약/키워드: CT imaging techniques

검색결과 116건 처리시간 0.022초

Four-Dimensional Thoracic CT in Free-Breathing Children

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.50-57
    • /
    • 2019
  • In pediatric thoracic CT, respiratory motion is generally treated as a motion artifact degrading the image quality. Conversely, respiratory motion in the thorax can be used to answer important clinical questions, that cannot be assessed adequately via conventional static thoracic CT, by utilizing four-dimensional (4D) CT. However, clinical experiences of 4D thoracic CT are quite limited. In order to use 4D thoracic CT properly, imagers should understand imaging techniques, radiation dose optimization methods, and normal as well as typical abnormal imaging appearances. In this article, the imaging techniques of pediatric thoracic 4D CT are reviewed with an emphasis on radiation dose. In addition, several clinical applications of pediatric 4D thoracic CT are addressed in various thoracic functional abnormalities, including upper airway obstruction, tracheobronchomalacia, pulmonary air trapping, abnormal diaphragmatic motion, and tumor invasion. One may further explore the clinical usefulness of 4D thoracic CT in free-breathing children, which can enrich one's clinical practice.

Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques

  • Chen Fu;Bangxing Zhang;Tiankang Guo;Junliang Li
    • Korean Journal of Radiology
    • /
    • 제25권1호
    • /
    • pp.86-102
    • /
    • 2024
  • Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.

CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments

  • Chun-Ho Yun;Chung-Lieh Hung;Ming-Shien Wen;Yung-Liang Wan;Aaron So
    • Korean Journal of Radiology
    • /
    • 제22권11호
    • /
    • pp.1749-1763
    • /
    • 2021
  • Coronary computed tomography angiography (CCTA) is routinely used for anatomical assessment of coronary artery disease (CAD). However, invasive measurement of fractional flow reserve (FFR) is the current gold standard for the diagnosis of hemodynamically significant CAD. CT-derived FFRCT and CT perfusion are two emerging techniques that can provide a functional assessment of CAD for risk stratification and clinical decision making. Several clinical studies have shown that the diagnostic performance of concomitant CCTA and functional CT assessment for detecting hemodynamically significant CAD is at least non-inferior to that of other routinely used imaging modalities. This article aims to review the current clinical evidence and recent developments in functional CT techniques.

Fast MRI in Acute Ischemic Stroke: Applications of MRI Acceleration Techniques for MR-Based Comprehensive Stroke Imaging

  • You, Sung-Hye;Kim, Byungjun;Kim, Bo Kyu;Park, Sang Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권2호
    • /
    • pp.81-92
    • /
    • 2021
  • The role of neuroimaging in patients with acute ischemic stroke has been gradually increasing. The ultimate goal of stroke imaging is to make a streamlined imaging workflow for safe and efficient treatment based on optimized patient selection. In the era of multimodal comprehensive imaging in strokes, imaging based on computed tomography (CT) has been preferred for use in acute ischemic stroke, because, despite the unique strengths of magnetic resonance imaging (MRI), MRI has a longer scan duration than does CT-based imaging. However, recent improvements, such as multicoil technology and novel MRI acceleration techniques, including parallel imaging, simultaneous multi-section imaging, and compressed sensing, highlight the potential of comprehensive MR-based imaging for strokes. In this review, we discuss the role of stroke imaging in acute ischemic stroke management, as well as the strengths and limitations of MR-based imaging. Given these concepts, we review the current MR acceleration techniques that could be applied to stroke imaging and provide an overview of the previous research on each essential sequence: diffusion-weighted imaging, gradient-echo, fluid-attenuated inversion recovery, contrast-enhanced MR angiography, and MR perfusion imaging.

Spiral CT의 고속 영상재구성 알고리즘에 관한 연구 (A Study on the Fast Image Reconstruction Algorithm for Spiral CT)

  • 허창원;진승오;이재덕;허영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3207-3209
    • /
    • 2000
  • X-ray CT(Computed Tomography) has been a good modality for non-invasive diagnosis and recently, Conventional CT has been replaced rapidly with Spiral CT in recent. In X-ray CT, spiral scanning has various advantages such as better image quality, reduced scan time (in a single breath-hold), a lower x-ray dose. But, it requires very fast and high performance image processing system to reconstruct slice images from spiral scanning. This paper describes the fast image reconstruction techniques with filtered back projection from the viewpoints of fast algorithm as well as hardware implementation for real-time imaging.

  • PDF

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method

  • Pamela Sung;Jeong Min Lee;Ijin Joo;Sanghyup Lee;Tae-Hyung Kim;Balaji Ganeshan
    • Korean Journal of Radiology
    • /
    • 제20권4호
    • /
    • pp.558-568
    • /
    • 2019
  • Objective: To evaluate whether computed tomography (CT) reconstruction algorithms affect the CT texture features of the liver parenchyma. Materials and Methods: This retrospective study comprised 58 patients (normal liver, n = 34; chronic liver disease [CLD], n = 24) who underwent liver CT scans using a single CT scanner. All CT images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR) (iDOSE4), and model-based IR (IMR). On arterial phase (AP) and portal venous phase (PVP) CT imaging, quantitative texture analysis of the liver parenchyma using a single-slice region of interest was performed at the level of the hepatic hilum using a filtration-histogram statistic-based method with different filter values. Texture features were compared among the three reconstruction methods and between normal livers and those from CLD patients. Additionally, we evaluated the inter- and intra-observer reliability of the CT texture analysis by calculating intraclass correlation coefficients (ICCs). Results: IR techniques affect various CT texture features of the liver parenchyma. In particular, model-based IR frequently showed significant differences compared to FBP or hybrid IR on both AP and PVP CT imaging. Significant variation in entropy was observed between the three reconstruction algorithms on PVP imaging (p < 0.05). Comparison between normal livers and those from CLD patients revealed that AP images depend more strongly on the reconstruction method used than PVP images. For both inter- and intra-observer reliability, ICCs were acceptable (> 0.75) for CT imaging without filtration. Conclusion: CT texture features of the liver parenchyma evaluated using the filtration-histogram method were significantly affected by the CT reconstruction algorithm used.

Cross-Sectional and Skeletal Anatomy of Long-tailed Gorals (Naemorhedus caudatus) Using Imaging Evaluations

  • Sangjin Ahn;Woojin Shin;Yujin Han;Sohwon Bae;Cheaun Cho ;Sooyoung Choi;Jong-Taek Kim
    • Journal of Veterinary Science
    • /
    • 제24권4호
    • /
    • pp.60.1-60.8
    • /
    • 2023
  • Background: Accurate diagnosis of diseases in animals is crucial for their treatment, and imaging evaluations such as radiographs, computed tomography (CT), and magnetic resonance imaging (MRI) are important tools for this purpose. However, a cross-sectional anatomical atlas of normal skeletal and internal organs of long-tailed gorals (Naemorhedus caudatus) has not yet been prepared for diagnosing their diseases. Objectives: The objective of this study was to create an anatomical atlas of gorals using CT and MRI, which are imaging techniques that have not been extensively studied in this type of wild animal in Korea. Methods: The researchers used CT and MRI to create an anatomical atlas of gorals, and selected 37 cross-sections from the head, thoracic, lumbar, and sacrum parts of gorals to produce an average cross-sectional anatomy atlas. Results: This study successfully created an anatomical atlas of gorals using CT and MRI. Conclusions: The atlas provides valuable information for the diagnosis of diseases in gorals, which can improve their treatment and welfare. The study highlights the importance of developing cross-sectional anatomical atlases of gorals to diagnose and treat their diseases effectively.

자기공명영상과 PET/CT를 중심으로 한 전립선 암의 영상 진단 (Imaging Assessment of Primary Prostate Cancer, Focused on Advanced MR Imaging and PET/CT)

  • 장진희;변재영;김민성;이영준;오순남;나성은;유이령
    • Investigative Magnetic Resonance Imaging
    • /
    • 제12권2호
    • /
    • pp.89-99
    • /
    • 2008
  • 전립선 암은 종양 영상 분야에서 가장 어려운 분야 중 하나이다. 술전 영상 검사를 통한 전립선 암의 발견 (detection), 정위 (localization) 그리고 병기결정(staging)은 여전히 영상의학과 의사의 도전이 필요한 분야이다. 자기공명 영상은 우수한 연부 조직 대조를 보이며 여러 고형 장기의 영상에 널리 쓰이나, 전립선의 술전 자기공명 영상의 결과는 기대에 미치지 못한다. 전산화단층촬영 영상과 결합된 양전자방출단층촬영술 (PET/CT)은 종양 영상의 발달에 획기적인 기여를 하였으나, 전립선암의 평가에는 어려움이 많다. 최근에 이러한 불충분한 정확도를 극복하기 위하여 발전된 자기공명 영상 기법과 PET/CT을 이용한 전립선암 영상에 대한 연구들이 발표되었다. 본 종설에서는 새로운 기법의 자기 공명 영상과 PET/CT 영상을 중심으로 전립선암의 다양한 영상법과 그 소견을 살펴볼 것이다.

  • PDF

Evaluation of Tracheobronchial Diseases: Comparison of Different Imaging Techniques

  • Qihang Chen;Jin Mo Goo;Joon Beom Seo;Myung Jin Chung;Yu-Jin Lee;Jung-Gi Im
    • Korean Journal of Radiology
    • /
    • 제1권3호
    • /
    • pp.135-141
    • /
    • 2000
  • Objective: To compare the clinical utility of the different imaging techniques used for the evaluation of tracheobronchial diseases. Materials and Methods: Forty-one patients with tracheobronchial diseases [tuberculosis (n = 18), bronchogenic carcinoma (n = 10), congenital abnormality (n = 3), post-operative stenosis (n = 2), and others (n = 8)] underwent chest radiography and spiral CT. Two sets of scan data were obtained: one from routine thick-section axial images and the other from thin-section axial images. Multiplanar reconstruction (MPR) and shaded surface display (SSD) images were obtained from thin-section data. Applying a 5-point scale, two observers compared chest radiography, routine CT, thin-section spiral CT, MPR and SSD imaging with regard to the detection, localization, extent, and characterization of a lesion, information on its relationship with adjacent structures, and overall information. Results: SSD images were the most informative with regard to the detection (3.95±0.31), localization (3.95±0.22) and extent of a lesion (3.85±0.42), and overall information (3.83±0.44), while thin-section spiral CT scans provided most information regarding its relationship with adjacent structures (3.56±0.50) and characterization of the lesion (3.51±0.61). Conclusion: SSD images and thin-section spiral CT scans can provide valuable information for the evaluation of tracheobronchial disease.

  • PDF