• Title/Summary/Keyword: CT image

Search Result 1,599, Processing Time 0.033 seconds

When Evaluated Using CT Imaging Phantoms AAPM Phantom Studies on the Quantitative Analysis Method (AAPM Phantom을 이용한 CT 팬텀 영상 평가 시 정량적 분석 방법에 관한 연구)

  • Kim, Young-Su;Ye, Soo-Young;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.592-600
    • /
    • 2016
  • AAPM CT performance for special medical equipment quality control checks using a standard phantom for evaluation, using the evaluator's subjective assessment as to minimize errors due computerized assessment program to evaluate their usefulness. Phantom for evaluation AAPM CT Performance Phantom: was used, the default shooting conditions are the same as quality control checks. And, we use IMAGE J to evaluate the program. Quantitative evaluation with CT attenuation coefficient and the noise measurement, the uniformity measurement, the slice thickness measurement, contrast resolution of the measurement, a phantom image of the spatial resolution determined by the evaluation program is evaluated as self-extracting the result after processing the image, CT uniformity measurement for the evaluation that was smaller and the standard deviation of a video image processing more uniform slice thickness measurements it is difficult to evaluate due to the difference of the ratio of the measured value of the phantom image. Contrast resolution was measured cylindrical diameter 6th evaluate the shape of a circle obtained a mean value and a standard deviation of diameters, the spatial resolution of the group of source, including acceptance criteria automatically extracted result as a result of both the number of the extracted circularIt appeared. Evaluate the source image and video processing, and video to qualitative evaluation by gross were processed video image is shown excellent results. If the evaluators in order to minimize the errors of subjective judgment based on the results of the above should be done with a quantitative evaluation and qualitative evaluation utilizes a computerized assessment program is considered that further evaluation be made more efficient.

The Dependence of CT Scanning Parameters on CT Number to Physical Density Conversion for CT Image Based Radiation Treatment Planning System (CT 영상기반 방사선치료계획시스템을 위한 CT수 대 물리적 밀도 변환에 관한 CT 스캐닝 매개변수의 의존성)

  • Baek, Min Gyu;Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.501-508
    • /
    • 2017
  • The dependence of CT scanning parameters on the CT number to physical density conversion from the CT image of CT and CBCT electron density phantom acquired by the CT scanner using in radiotherapy were analyzed by experiment. The CT numbers were independent of the tube current product exposure time, slice thickness, filter of image reconstruction, field of view and volume of phantom. But the CT numbers were dependent on the tube voltage and cross section of phantom. As a result, for physical density range above 0, the maximum CT number difference observed at the tube voltage between 90 and 120 kVp was 27%, and the maximum CT number difference observed between CT body and head electron density phantom was 15%.

자가 치아 이식술에 사용되는 Computer Aided Rapid Prototyping model(CARP model)의 실제 치아에 대한 오차

  • Lee, Seong-Jae;Kim, Ui-Seong;Kim, Gi-Deok;Lee, Seung-Jong
    • The Journal of the Korean dental association
    • /
    • v.44 no.2 s.441
    • /
    • pp.115-122
    • /
    • 2006
  • Objective : The purpose of this study was to evaluate the dimensional errors between real tooth, 3D CT image and CARP model. Materials and Methods : Two maxilla and two mandible block bones with intact teeth were taken from two cadavers. Computed tomography was taken either in dry state and in wet state. After then, all teeth were extracted and the dimensions of the real teeth were measured using a digital caliper at mesio-distal and bucco-lingual width both in crown and cervical portion. 3D CT image was generated using the V-works $4.0^{TM}$ (Cybemed Inc., Seoul, Korea) software. Twelve teeth were randomly selected for CARP model fabrication. All the measurements of 3D Ct images and CARP models were made in the same manner of the real tooth group. Dimensional errors between real tooth, 3D CT image model and CARP model was calculated. Results : 1) Average of absolute error was 0.199 mm between real teeth and 3D CT image model, 0.169 mm between 3D CT image model and CARP model and 0.291 mm between real teeth and CARP model, respectively. 2) Average size of 3D CT image was smaller than real teeth by 0.149 mm and that of CARP model was smalier than 3D CT image model by 0.067mm. Conclusion : Within the scope of this study, CARP model with the 0.291 mm average of absolute eror can aid to enhance the success rate cf autogenous tooth transplantation due to the increased accuracy of recipient bone and donor tooth.

  • PDF

Comparison of personal computer with CT workstation in the evaluation of 3-dimensional CT image of the skull (전산화단층촬영 단말장치와 개인용 컴퓨터에서 재구성한 두부 3차원 전산화단층영상의 비교)

  • Kang Bok-Hee;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Purpose : To evaluate the usefulness of the reconstructed 3-dimensional image on the personal computer in comparison with that of the CT workstation by quantitative comparison and analysis. Materials and Methods : The spiral CT data obtained from 27 persons were transferred from the CT workstation to a personal computer, and they were reconstructed as 3-dimensional image on the personal computer using V-works 2.0/sup TM/. One observer obtained the 14 measurements on the reconstructed 3-dimensional image on both the CT workstation and the personal computer. Paired Nest was used to evaluate the intraobserver difference and the mean value of the each measurement on the CT workstation and the personal computer. Pearson correlation analysis and % incongruence were also performed. Results: I-Gn, N-Gn, N-A, N-Ns, B-A, and G-Op did not show any statistically significant difference (p>0.05), B-O, B-N, Eu-Eu, Zy-Zy, Biw, D-D, Orbrd R, and L had statistically significant difference (p<0.05), but the mean values of the differences of all measurements were below 2 mm, except for D-D. The value of correlation coefficient y was greater than 0.95 at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and it was 0.75 at B-O, 0.78 at D-D, and 0.82 at both Orbrd Rand L. The % incongruence was below 4% at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and 7.18%, 10.78%, 4.97%, 5.89% at B-O, D-D, Orbrd Rand L respectively. Conclusion : It can be considered that the utilization of the personal computer has great usefulness in reconstruction of the 3-dimensional image when it comes to the economics, accessibility and convenience, except for thin bones and the landmarks which are difficult to be located.

  • PDF

Application of Total Variation Optimization for Reduction of Head CT Dose (두부 CT 선량감소를 위한 총변량 최적화의 적용)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.707-712
    • /
    • 2018
  • The number of CT examinations is increasing, and radiation exposure is also increasing. repeated tests can affect the lens and thyroid. In hospitals, there is a tendency to lack interest in major long-term radiation exposure compared to the interest in increasing image information and image quality with head CT. In this study, we analyzed the improvement of image quality by proposed method to the noisy CT images. The proposed denoising method total variance optimization only for the impulsive noise candidate pixels. Experimental results show that edge information is well preserved and impulse noise can be effectively removed. and worked very well for the images according to tube voltage and rotation time. applied to the clinical setting, it can be used as the lowest exposure condition without worrying about the image quality and it will be helpful for the CT application.

Analysis on Optimal Approach of Blind Deconvolution Algorithm in Chest CT Imaging (흉부 컴퓨터단층촬영 영상에서 블라인드 디컨볼루션 알고리즘 최적화 방법에 대한 연구)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.145-150
    • /
    • 2022
  • The main purpose of this work was to restore the blurry chest CT images by applying a blind deconvolution algorithm. In general, image restoration is the procedure of improving the degraded image to get the true or original image. In this regard, we focused on a blind deblurring approach with chest CT imaging by using digital image processing in MATLAB, which the blind deconvolution technique performed without any whole knowledge or information as to the fundamental point spread function (PSF). For our approach, we acquired 30 chest CT images from the public source and applied three type's PSFs for finding the true image and the original PSF. The observed image might be convolved with an isotropic gaussian PSF or motion blurring PSF and the original image. The PSFs are assumed as a black box, hence restoring the image is called blind deconvolution. For the 30 iteration times, we analyzed diverse sizes of the PSF and tried to approximate the true PSF and the original image. For improving the ringing effect, we employed the weighted function by using the sobel filter. The results was compared with the three criteria including mean squared error (MSE), root mean squared error (RMSE) and peak signal-to-noise ratio (PSNR), which all values of the optimal-sized image outperformed those that the other reconstructed two-sized images. Therefore, we improved the blurring chest CT image by using the blind deconvolutin algorithm for optimal approach.

The Development of Simplified Ultrasonic CT System and Its Application to the Evaluation of Weld Metal

  • Kim, Kyung-Cho;Hiroaki Fukuhara;Hisashi Yamawaki;Tetsuya Saito
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • In this paper, as a new measurement method to estimate the change of material condition, the simplified ultrasonic CT system, which uses the information of three directions, that is, $90^{\circ}$, $+45^{\circ}C$and $-45^{\circ}C$ about inspection plane is proposed. Use of simplified CT system has two merits: Firstly, the measurement time is very short compared with general CT. Secondly, it can detect sensitively small defect in vertical or slant direction about inspection plane because the obtained image is CT image calculated from three directions. From these merits, this method can be considered as an effective method to evaluate material conditions. The basic performance of the proposed method was confirmed through several specimens with several simple defects. In order to confirm the applicability of actual NDT, several kinds of welded specimens are investigated. The result showed that the CT image obtained had good agreement with actual defect of specimens.

  • PDF

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study (폐질환의 SPECT와 CT 융합영상의 유용성: 초기연구)

  • Park, Hoon-Hee;Kim, Tae-Hyung;Shin, Ji-Yun;Lee, Tae-Soo;Lyu, Kwang-Yeul
    • Journal of radiological science and technology
    • /
    • v.35 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing.However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: $65.3{\pm}12.7$). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

Metal artifact SUV estimation by using attenuation correction image and non attenuation correction image in PET-CT (PET-CT에서 감쇠보정 영상과 비감쇠보정 영상을 통한 Metal Artifact 보정에 대한 고찰)

  • Kim, June;Kim, Jae-II;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • Purpose Because of many advantages, PET-CT Scanners generally use CT Data for attenuation correction. By using CT based attenuation correction, we can get anatomical information, reduce scan time and make more accurate correction of attenuation. However in case metal artifact occurred during CT scan, CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET images. Therefore this study infers true SUV of metal artifact region from attenuation corrected image count -to- non attenuation corrected image count ratio. Materials and Methods Micro phantom inserted $^{18}F-FDG$ 4mCi was used for phantom test and Biograph mCT S(40) is used for medical test equipment. We generated metal artifact in micro phantom by using metal. Then we acquired both metal artifact region of correction factor and non metal artifact region of correction factor by using attenuation correction image count -to- non attenuation correction image count ratio. In case of clinical image, we reconstructed both attenuation corrected images and non attenuation corrected images of 10 normal patient($66{\pm}15age$) who examined PET-CT scan in SNUH. After that, we standardize several organs of correction factor by using attenuation corrected image count -to- non attenuation corrected count ratio. Then we figured out metal artifact region of correction factor by using metal artifact region of attenuation corrected image count -to- non attenuation corrected count ratio And we compared standard organs correction factor with metal artifact region correction factor. Results according to phantom test results, metal artifact induce overestimation of correction factor so metal artifact region of correction factors are 12% bigger than the non metal artifact region of correction factors. in case of clinical test, correction factor of organs with high CT number(>1000) is $8{\pm}0.5%$, correction factor of organs with CT number similar to soft tissue is $6{\pm}2%$ and correction factor of organs with low CT number(-100>) is $3{\pm}1%$. Also metal artifact correction factors are 20% bigger than soft tissue correction factors which didn't happened metal artifact. Conclusion metal artifact lead to overestimation of attenuation coefficient. because of that, SUV of metal artifact region is overestimated. Thus for more accurate quantitative evaluation, using attenuation correction image count -to-non attenuation correction image count ratio is one of the methods to reduce metal artifact affect.

  • PDF