• Title/Summary/Keyword: CT fractional flow reserve

Search Result 4, Processing Time 0.016 seconds

CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments

  • Chun-Ho Yun;Chung-Lieh Hung;Ming-Shien Wen;Yung-Liang Wan;Aaron So
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1749-1763
    • /
    • 2021
  • Coronary computed tomography angiography (CCTA) is routinely used for anatomical assessment of coronary artery disease (CAD). However, invasive measurement of fractional flow reserve (FFR) is the current gold standard for the diagnosis of hemodynamically significant CAD. CT-derived FFRCT and CT perfusion are two emerging techniques that can provide a functional assessment of CAD for risk stratification and clinical decision making. Several clinical studies have shown that the diagnostic performance of concomitant CCTA and functional CT assessment for detecting hemodynamically significant CAD is at least non-inferior to that of other routinely used imaging modalities. This article aims to review the current clinical evidence and recent developments in functional CT techniques.

Beyond Coronary CT Angiography: CT Fractional Flow Reserve and Perfusion (전산화단층촬영 관상동맥조영술: 분획혈류예비력과 심근관류 영상)

  • Moon Young Kim;Dong Hyun Yang;Ki Seok Choo;Whal Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.3-27
    • /
    • 2022
  • Cardiac CT has been proven to provide diagnostic and prognostic evaluation of coronary artery disease for cardiovascular risk stratification and treatment decision-making based on rapid technological development and various research evidence. Coronary CT angiography has emerged as a gateway test for coronary artery disease that can reduce invasive angiography due to its high negative predictive value, but the diagnostic specificity is relatively low. However, coronary CT angiography is likely to overcome its limitations through functional evaluation to identify the hemodynamic significance of coronary artery disease by analyzing myocardial perfusion and fractional flow reserve through cardiac CT. Recently, studies have been actively conducted to incorporate artificial intelligence to make this more objective and reproducible. In this review, functional imaging techniques of cardiac computerized tomography are explored.

CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard

  • Yarong Yu;Lihua Yu;Xu Dai;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1964-1973
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of CT fractional flow reserve (CT-FFR) for myocardial bridging-related ischemia using dynamic CT myocardial perfusion imaging (CT-MPI) as a reference standard. Materials and Methods: Dynamic CT-MPI and coronary CT angiography (CCTA) data obtained from 498 symptomatic patients were retrospectively reviewed. Seventy-five patients (mean age ± standard deviation, 62.7 ± 13.2 years; 48 males) who showed myocardial bridging in the left anterior descending artery without concomitant obstructive stenosis on the imaging were included. The change in CT-FFR across myocardial bridging (ΔCT-FFR, defined as the difference in CT-FFR values between the proximal and distal ends of the myocardial bridging) in different cardiac phases, as well as other anatomical parameters, were measured to evaluate their performance for diagnosing myocardial bridging-related myocardial ischemia using dynamic CT-MPI as the reference standard (myocardial blood flow < 100 mL/100 mL/min or myocardial blood flow ratio ≤ 0.8). Results: ΔCT-FFRsystolic (ΔCT-FFR calculated in the best systolic phase) was higher in patients with vs. without myocardial bridging-related myocardial ischemia (median [interquartile range], 0.12 [0.08-0.17] vs. 0.04 [0.01-0.07], p < 0.001), while CT-FFRsystolic (CT-FFR distal to the myocardial bridging calculated in the best systolic phase) was lower (0.85 [0.81-0.89] vs. 0.91 [0.88-0.96], p = 0.043). In contrast, ΔCT-FFRdiastolic (ΔCT-FFR calculated in the best diastolic phase) and CT-FFRdiastolic (CT-FFR distal to the myocardial bridging calculated in the best diastolic phase) did not differ significantly. Receiver operating characteristic curve analysis showed that ΔCT-FFRsystolic had largest area under the curve (0.822; 95% confidence interval, 0.717-0.901) for identifying myocardial bridging-related ischemia. ΔCT-FFRsystolic had the highest sensitivity (91.7%) and negative predictive value (NPV) (97.8%). ΔCT-FFRdiastolic had the highest specificity (85.7%) for diagnosing myocardial bridging-related ischemia. The positive predictive values of all CT-related parameters were low. Conclusion: ΔCT-FFRsystolic reliably excluded myocardial bridging-related ischemia with high sensitivity and NPV. Myocardial bridging showing positive CT-FFR results requires further evaluation.

OCT를 기반으로 한 FFR지표계산과 임상결과 비교에 대한 연구

  • Sin, Seong-Ung;Lee, Gyeong-Eun;Lee, Seo-Ho;Bang, Hyeon-Gi;Lee, Jong-Ho;Park, Seon-Yeol;Lee, Yeong-Gwon;Sim, Eun-Bo
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.628-630
    • /
    • 2017
  • 관상동맥의 협착 병변의 위험성을 치료 및 예방하기 위하여 FFR(Fractional flow reserve)이라는 지표를 사용한다. 기존의 임상에서 FFR을 측정하기 위하여 침습적인 방법을 이용하여 진행하였다. 이러한 침습적 방법은 부작용의 위험성을 가지고 있기 때문에 컴퓨터 시뮬레이션을 통해 계산하면 위험성을 해소할 수 있다. 하지만 현재 컴퓨터 시뮬레이션은 CT image를 이용하기 때문에 칼슘을 정확히 구별하거나 지질의 위치 등을 확인하는 것이 어렵기 때문에 FFR 결과에 오류를 발생시킬 수도 있고, 또한 전체 관상동맥을 해석하기 때문에 많은 계산량이 필요하다. 본 연구에서는 최근 높은 해상도를 가진 OCT(Optical Coherence Tomography)를 이용하여 이러한 한계점을 극복하고자 하고, 임상에서 측정한 FFR과 OCT에서 측정된 FFR은 비교하는 것이 목적이다.

  • PDF