• Title/Summary/Keyword: CT Coefficient

Search Result 217, Processing Time 0.022 seconds

Automatic Detection of Foreign Body through Template Matching in Industrial CT Volume Data (산업용 CT 볼륨데이터에서 템플릿 매칭을 통한 이물질 자동 검출)

  • Ji, Hye-Rim;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1376-1384
    • /
    • 2013
  • In this paper, we propose an automaticdetection method of foreign bodies through template matching in industrial CT volume data. Our method is composed of three main steps. First,Indown-sampling data, the product region is separated from background after noise reduction and initial foreign-body candidates are extracted using mean and standard deviation of the product region. Then foreign-body candidates are extracted using K-means clustering. Second, the foreign body with different intensity of product region is detected using template matching. At this time, the template matching is performed by evaluating SSD orjoint entropy according to the size of detected foreign-body candidates. Third, to improve thedetection rate of foreign body in original volume data, final foreign bodiesare detected using percolation method. For the performance evaluation of our method, industrial CT volume data and simulation data are used. Then visual inspection and accuracy assessment are performed and processing time is measured. For accuracy assessment, density-based detection method is used as comparative method and Dice's coefficient is measured.

Development of Self-Diagnosis Linearity Quality Assurance Technique in Computed Tomography by Using Iodic Contrast Media (요오드 조영제를 이용한 전산화단층촬영장치의 자가진단 직선성 정도관리 기술 개발)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.436-443
    • /
    • 2015
  • The purpose of this study was to develop a self-diagnostic linearity quality control techniques of computed tomography (CT) by using measured CT number values from the various concentrations of iodine contrast media (CM) is diluted with distilled water under each condition of the tube voltage. The equipment was used for four-channel MDCT, the iodine concentration were using 300 mgI/ml, 350 mgI/ml, 370 mgI/ml and 400mgI/ml. Dilution of CM in distilled water was increased by each 5% until the maximum CT number values were measured. We applied the tube voltages for 90 kVp, 120 kVp, 140 kVp. As a result, we was obtained to the nearest linearity as 0.993 of correlation coefficient between the iodinated CM from 5% to 25% in 400 mgI/ml and the CT number values by 90 kVp. In conclusion, the proposed self-diagnostic linearity quality assurance technique by using iodine CM can be utilized to replace the AAPM CT performance phantom.

Iodine Quantification on Spectral Detector-Based Dual-Energy CT Enterography: Correlation with Crohn's Disease Activity Index and External Validation

  • Kim, Yeon Soo;Kim, Se Hyung;Ryu, Hwa Sung;Han, Joon Koo
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1077-1088
    • /
    • 2018
  • Objective: To correlate CT parameters on detector-based dual-energy CT enterography (DECTE) with Crohn's disease activity index (CDAI) and externally validate quantitative CT parameters. Materials and Methods: Thirty-nine patients with CD were retrospectively enrolled. Two radiologists reviewed DECTE images by consensus for qualitative and quantitative CT features. CT attenuation and iodine concentration for the diseased bowel were also measured. Univariate statistical tests were used to evaluate whether there was a significant difference in CTE features between remission and active groups, on the basis of the CDAI score. Pearson's correlation test and multiple linear regression analyses were used to assess the correlation between quantitative CT parameters and CDAI. For external validation, an additional 33 consecutive patients were recruited. The correlation and concordance rate were calculated between real and estimated CDAI. Results: There were significant differences between remission and active groups in the bowel enhancement pattern, subjective degree of enhancement, mesenteric fat infiltration, comb sign, and obstruction (p < 0.05). Significant correlations were found between CDAI and quantitative CT parameters, including number of lesions (correlation coefficient, r = 0.573), bowel wall thickness (r = 0.477), iodine concentration (r = 0.744), and relative degree of enhancement (r = 0.541; p < 0.05). Iodine concentration remained the sole independent variable associated with CDAI in multivariate analysis (p = 0.001). The linear regression equation for CDAI (y) and iodine concentration (x) was y = 53.549x + 55.111. For validation patients, a significant correlation (r = 0.925; p < 0.001) and high concordance rate (87.9%, 29/33) were observed between real and estimated CDAIs. Conclusion: Iodine concentration, measured on detector-based DECTE, represents a convenient and reproducible biomarker to monitor disease activity in CD.

COVID-19 Lung CT Image Recognition (COVID-19 폐 CT 이미지 인식)

  • Su, Jingjie;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.529-536
    • /
    • 2022
  • In the past two years, Severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2) has been hitting more and more to people. This paper proposes a novel U-Net Convolutional Neural Network to classify and segment COVID-19 lung CT images, which contains Sub Coding Block (SCB), Atrous Spatial Pyramid Pooling(ASPP) and Attention Gate(AG). Three different models such as FCN, U-Net and U-Net-SCB are designed to compare the proposed model and the best optimizer and atrous rate are chosen for the proposed model. The simulation results show that the proposed U-Net-MMFE has the best Dice segmentation coefficient of 94.79% for the COVID-19 CT scan digital image dataset compared with other segmentation models when atrous rate is 12 and the optimizer is Adam.

Development of Portable X-ray CT System I - Evaluation of Wood Density using X-ray Radiography - (현장 적용이 가능한 X선 CT 시스템 개발 I - X선 촬영법을 이용한 목재의 밀도 측정 -)

  • Kim, Kwang-Mo;Lee, Sang-Joon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • ln order to manage efficiently many ancient wooden buildings, which have been preserved as cultural properties in Korea, the internal state of wood members should be evaluated exactly and periodically by a NDE (non-destructive evaluation) method. A research project was planned to develop an X-ray CT (computed tomography) system as a NDE method for wood, which could be easily applied in field. This paper includes the first part of this project. First of all, to establish a measuring procedure of wood density using X-ray radiography, the correlation between X-ray intensity and the film brightness was evaluated. Also, initial X-ray intensity was quantified with various radiate conditions controlled by the tube voltage and tube current. And then, the effects of density, annual ring angle, and thickness on the mass attenuation coefficient of wood were examined. Finally, Beer's law was modified with the above results and adopted to calculate the density of wood. As a result of this study, the measuring procedure of wood density was established using a portable soft X-ray device and this procedure was verified with some small wood specimens. This results will he used valuably for the following researches to develop a portable X-ray CT system.

Feasibility of the Threshold-Based Quantification of Myocardial Fibrosis on Cardiac CT as a Prognostic Marker in Nonischemic Dilated Cardiomyopathy

  • Na Young Kim;Dong Jin Im;Yoo Jin Hong;Byoung Wook Choi;Seok-Min Kang;Jong-Chan Youn;Hye-Jeong Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.540-549
    • /
    • 2024
  • Objective: This study investigated the feasibility and prognostic relevance of threshold-based quantification of myocardial delayed enhancement (MDE) on CT in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods: Forty-three patients with NIDCM (59.3 ± 17.1 years; 21 male) were included in the study and underwent cardiac CT and MRI. MDE was quantified manually and with a threshold-based quantification method using cutoffs of 2, 3, and 4 standard deviations (SDs) on three sets of CT images (100 kVp, 120 kVp, and 70 keV). Interobserver agreement in MDE quantification was assessed using the intraclass correlation coefficient (ICC). Agreement between CT and MRI was evaluated using the Bland-Altman method and the concordance correlation coefficient (CCC). Patients were followed up for the subsequent occurrence of the primary composite outcome, including cardiac death, heart transplantation, heart failure hospitalization, or appropriate use of an implantable cardioverter-defibrillator. The Kaplan-Meier method was used to estimate event-free survival according to MDE levels. Results: Late gadolinium enhancement (LGE) was observed in 29 patients (67%, 29/43), and the mean LGE found with the 5-SD threshold was 4.1% ± 3.6%. The 4-SD threshold on 70-keV CT showed excellent interobserver agreement (ICC = 0.810) and the highest concordance with MRI (CCC = 0.803). This method also yielded the smallest bias with the narrowest range of 95% limits of agreement compared to MRI (bias, -0.119%; 95% limits of agreement, -4.216% to 3.978%). During a median follow-up of 1625 days (interquartile range, 712-1430 days), 10 patients (23%, 10/43) experienced the primary composite outcome. Event-free survival significantly differed between risk subgroups divided by the optimal MDE cutoff of 4.3% (log-rank P = 0.005). Conclusion: The 4-SD threshold on 70-keV monochromatic CT yielded results comparable to those of MRI for quantifying MDE as a marker of myocardial fibrosis, which showed prognostic value in patients with NIDCM.

Assessment of the Severity of Coronavirus Disease: Quantitative Computed Tomography Parameters versus Semiquantitative Visual Score

  • Xi Yin;Xiangde Min;Yan Nan;Zhaoyan Feng;Basen Li;Wei Cai;Xiaoqing Xi;Liang Wang
    • Korean Journal of Radiology
    • /
    • v.21 no.8
    • /
    • pp.998-1006
    • /
    • 2020
  • Objective: To compare the accuracies of quantitative computed tomography (CT) parameters and semiquantitative visual score in evaluating clinical classification of severity of coronavirus disease (COVID-19). Materials and Methods: We retrospectively enrolled 187 patients with COVID-19 treated at Tongji Hospital of Tongji Medical College from February 15, 2020, to February 29, 2020. Demographic data, imaging characteristics, and clinical data were collected, and based on the clinical classification of severity, patients were divided into groups 1 (mild) and 2 (severe/critical). A semiquantitative visual score was used to estimate the lesion extent. A three-dimensional slicer was used to precisely quantify the volume and CT value of the lung and lesions. Correlation coefficients of the quantitative CT parameters, semiquantitative visual score, and clinical classification were calculated using Spearman's correlation. A receiver operating characteristic curve was used to compare the accuracies of quantitative and semi-quantitative methods. Results: There were 59 patients in group 1 and 128 patients in group 2. The mean age and sex distribution of the two groups were not significantly different. The lesions were primarily located in the subpleural area. Compared to group 1, group 2 had larger values for all volume-dependent parameters (p < 0.001). The percentage of lesions had the strongest correlation with disease severity with a correlation coefficient of 0.495. In comparison, the correlation coefficient of semiquantitative score was 0.349. To classify the severity of COVID-19, area under the curve of the percentage of lesions was the highest (0.807; 95% confidence interval, 0.744-0.861: p < 0.001) and that of the quantitative CT parameters was significantly higher than that of the semiquantitative visual score (p = 0.001). Conclusion: The classification accuracy of quantitative CT parameters was significantly superior to that of semiquantitative visual score in terms of evaluating the severity of COVID-19.

Evaluation of Corrected Dose with Inhomogeneous Tissue by using CT Image (CT 영상을 이용한 불균질 조직의 선량보정 평가)

  • Kim, Gha-Jung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Purpose: In radiation therapy, precise calculation of dose toward malignant tumors or normal tissue would be a critical factor in determining whether the treatment would be successful. The Radiation Treatment Planning (RTP) system is one of most effective methods to make it effective to the correction of dose due to CT number through converting linear attenuation coefficient to density of the inhomogeneous tissue by means of CT based reconstruction. Materials and Methods: In this study, we carried out the measurement of CT number and calculation of mass density by using RTP system and the homemade inhomogeneous tissue Phantom and the values were obtained with reference to water. Moreover, we intended to investigate the effectiveness and accuracy for the correction of inhomogeneous tissue by the CT number through comparing the measured dose (nC) and calculated dose (Percentage Depth Dose, PDD) used CT image during radiation exposure with RTP. Results: The difference in mass density between the calculated tissue equivalent material and the true value was ranged from $0.005g/cm^3\;to\;0.069g/cm^3$. A relative error between PDD of RTP and calculated dose obtained by radiation therapy of machine ranged from -2.8 to +1.06%(effective range within 3%). Conclusion: In conclusion, we confirmed the effectiveness of correction for the inhomogeneous tissues through CT images. These results would be one of good information on the basic outline of Quality Assurance (QA) in RTP system.

  • PDF

Optical Skin-fat Thickness Measurement Using Miniaturized Chip LEDs: A Preliminary Human Study

  • Ho, Dong-Su;Kim, Ee-Hwa;Hwang, In-Duk;Shin, Kun-Soo;Oh, Jung-Taek;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.304-309
    • /
    • 2009
  • We tested the feasibility of measuring fat thickness using a miniaturized chip LED sensor module, testing 12 healthy female subjects. The module consisted of a single detector and four sources at four different source-detector distances (SD). A segmental curve-fitting procedure was applied, using an empirical algorithm obtained by Monte-Carlo simulation, and fat thicknesses were estimated. These thicknesses were compared to computed-tomography (CT) results; the correlation coefficient between CT and optical measurements was 0.932 for bicep sites. The mean percentage error between the two measurements was 13.12%. We conclude that fat thickness can be efficiently measured using the simple sensor module.

Evaluation of SUV Which was Estimated Using Mini PACS by PET/CT Scanners (PET/CT 장비 별 mini PACS에서 측정한 표준섭취계수(SUV)의 유용성 평가)

  • Park, Seung-Yong;Ko, Hyun-Soo;Kim, Jung-Sun;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.47-52
    • /
    • 2011
  • Purpose: Facilities use own sever or mini PACS system for storage and analysis of the PET/CT data. Mini PACS can storage scan data as well as measuring SUV. Therefore, the study was performed to confirm whether or not measured SUV on mini PACS is measured equally on PET/CT workstation. Materials and Methods: In February 2011, 30 patients who were performed $^{18}F$-FDG wholebody PET/CT scan in Biograph 16, Biograph 40 and Discovery Ste 8 were enrolled. First, using each workstation, SUV in liver and aorta of mediastinum level was measured. Second, using mini PACS, SUV was measured by same method. Result: The correlation coefficient of SUV in liver between PET/CT scanner and min PACS in Biograph 16, Biograph 40, Discovery Ste 8 was 0.99, 0.98, 0.64 respectably, the correlation coefficient of SUV in aorta was 0.98, 0.98, 0.66, and these were showed positive correlation coefficient. Difference of SUV between Biograph workstation and mini PACS was not showed statistical significant difference at 5% level of significance. Difference of SUV between Discovery Ste 8 workstation and mini PACS was showed statistical significant difference at 5% level of significance. Conclusion: In case that patient was scanned by the other scanner, if the correction of SUV formula in mini PACS for each scanners is performed, mini PACS will be usefully used to provide consistently quantitative assessment.

  • PDF