• Title/Summary/Keyword: CT Attenuation Correction

Search Result 74, Processing Time 0.033 seconds

Evaluating the Impact of Attenuation Correction Difference According to the Lipiodol in PET/CT after TACE (간동맥 화학 색전술에 사용하는 Lipiodol에 의한 감쇠 오차가 PET/CT검사에서 영상에 미치는 영향 평가)

  • Cha, Eun Sun;Hong, Gun chul;Park, Hoon;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.67-70
    • /
    • 2013
  • Purpose: Surge in patients with hepatocellular carcinoma, hepatic artery chemical embolization is one of the effective interventional procedures. The PET/CT examination plays an important role in determining the presence of residual cancer cells and metastasis, and prognosis after embolization. The other hand, the hepatic artery chemical embolization of embolic material used lipiodol produced artifacts in the PET/CT examination, and these artifacts results in quantitative evaluation influence. This study, the radioactivity density and the percentage error was evaluated by the extent of the impact of lipiodol in the image of PET/CT. Materials and Methods: 1994 NEMA Phantom was acquired for 2 minutes and 30 seconds per bed after the Teflon, water and lipiodol filled, and these three inserts into the enough to mix the rest behind radioactive injection with $20{\pm}10MBq$. Phantom reconfigure with the iterative reconstruction method the number of iterations for two times by law, a subset of 20 errors. We set up region of interest at each area of the Teflon, water, lipiodol, insert artifact occurs between regions, and background and it was calculated and compared by the radioactivity density(kBq/ml) and the% Difference. Results: Radioactivity density of the each region of interest area with the teflon, water, lipiodol, insert artifact occurs between regions, background activity was $0.09{\pm}0.04$, $0.40{\pm}0.17$, $1.55{\pm}0.75$, $2.5{\pm}1.09$, $2.65{\pm}1.16 kBq/ml$ (P <0.05) and it was statistically significant results. Percentage error of lipiodol in each area was 118%, compared to the water compared with the background activity 52%, compared with a teflon was 180% of the difference. Conclusion: We found that the error due to under the influence of the attenuation correction when PET/CT scans after lipiodol injection performed, and the radioactivity density is higher than compared to other implants, lower than background. Applying the nonattenuation correction images, and after hepatic artery chemical embolization who underwent PET/CT imaging so that the test should be take the consideration to the extent of the impact of lipiodol be.

  • PDF

The Comparison of Quantitative Accuracy Between Energy Window-Based and CT-Based Scatter Correction Method in SPECT/CT Images (SPECT/CT 영상에서 에너지창 기반 산란보정과 CT 기반 산란보정 방법의 정량적 정확성 비교)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Purpose In SPECT image, scatter count is the cause of quantitative count error and image quality degradation. Thus, a wide range of scatter correction(SC) methods have been studied and this study is to evaluate the accuracy of CT based SC(CTSC) used in SPECT/CT as the comparison with existing energy window based SC(EWSC). Materials and Methods SPECT/CT images were obtained after filling air in order to acquire a reference image without the influence of scatter count inside the Triple line insert phantom setting hot rod(74.0 MBq) in the middle and each SPECT/CT image was obtained each separately after filling water instead of air in order to derive the influence of scatter count under the same conditions. In both conditions, Astonish(iterative : 4 subset : 16) reconstruction method and CT attenuation correction were commonly applied and three types of SC methods such as non-scatter correction(NSC), EWSC, CTSC were used in images filled with image. For EWSC, 9 sub-energy windows were set additionally in addition to main(=peak) energy window(140 keV, 20%) and then, images were acquired at the same time and five types of EWSC including DPW(dual photo-peak window)10%, DEW(dual energy window)20%, TEW(triple energy window)10%, TEW5.0%, TEW2.5% were used. Under the condition without fluctuations in primary count, total count was measured by drawing volume of interest (VOI) in the images of the two conditions and then, the ratio of scatter count of total counts was calculated as percent scatter fraction(%SF) and the count error with image filled with water was evaluated with percent normalized mean-square error(%NMSE) based on the image filled with air. Results Based on the image filled with air, %SF of images filled with water to which each SC method was applied is NSC 37.44, DPW 27.41, DEW 21.84, TEW10% 19.60, TEW5% 17.02, TEW2.5% 14.68, CTSC 5.57 and the most scattering counts were removed in CTSC and %NMSE is NSC 35.80, DPW 14.28, DEW 7.81, TEW10% 5.94, TEW5% 4.21, TEW2.5% 2.96, CTSC 0.35 and the error in CTSC was found to be the lowest. Conclusion In SPECT/CT images, the application of each scatter correction method used in the experiment could improve the quantitative count error caused by the influence of scatter count. In particular, CTSC showed the lowest %NMSE(=0.35) compared to existing EWSC methods, enabling relatively accurate scatter correction.

  • PDF

Effect of MRI Media Contrast on PET/MRI (PET/MRI에 있어 MRI 조영제가 PET에 미치는 영향)

  • Kim, Jae Il;Kim, In Soo;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • Purpose: Integrated PET/MRI has been developed recently has become a lot of help to the point oncologic, neological, cardiological nuclear medicine. By using this PET/MRI, a ${\mu}-map$ is created some special MRI sequence which may be divided parts of the body for attenuation correction. However, because an MRI contrast agent is necessary in order to obtain an more MRI information, we will evaluate to see an effect of SUV on PET image that corrected attenuation by MRI with contrast agent. Materials and Methods: As PET/MRI machine, Biograph mMR (Siemens, Germany) was used. For phantom test, 1mCi $^{18}F-FDG$ was injected in cylinderical uniformity phantom, and then acquire PET data about 10 minutes with VIBE-DIXON, UTE MRI sequence image for attenuation correction. T1 weighted contrast media, 4 cc DOTAREM (GUERBET, FRANCE) was injected in a same phatnom, and then PET data, MRI data were acquired by same methodes. Using this PET, non-contrast MRI and contrast MRI, it was reconstructed attenuation correction PET image, in which we evanuated the difference of SUVs. Additionally, for let a high desity of contrast media, 500 cc 2 plastic bottles were used. We injected $^{18}F-FDG$ with 5 cc DOTAREM in first bottle. At second bottle, only $^{18}F-FDG$ was injected. and then we evaluated a SUVs reconstructed by same methods. For clinical patient study, rectal caner-pancreas cancer patients were selected. we evaluated SUVs of PET image corrected attenuastion by contrast weighted MRI and non-contrast MRI. Results: For a phantom study, although VIBE DIXON MRI signal with contrast media is 433% higher than non-contrast media MRI, the signals intensity of ${\mu}-map$, attenuation corrected PET are same together. In case of high contrast media density, image distortion is appeared on ${\mu}-map$ and PET images. For clinical a patient study, VIBE DIXON MRI signal on lesion portion is increased in 495% by using DOTAREM. But there are no significant differences at ${\mu}-map$, non AC PET, AC-PET image whether using contrast media or not. In case of whole body PET/MRI study, %diff between contras and non contrast MRAC at lung, liver, renal cortex, femoral head, myocardium, bladder, muscle are -4.32%, -2.48%, -8.05%, -3.14%, 2.30%, 1.53%, 6.49% at each other. Conclusion: In integrated PET/MRI, a segmentation ${\mu}-map$ method is used for correcting attenuation of PET signal. although MRI signal for attenuation correciton change by using contrast media, ${\mu}-map$ will not change, and then MRAC PET signal will not change too. Therefore, MRI contrast media dose not affect for attenuation correction PET. As well, not only When we make a flow of PET/MRI protocol, order of PET and MRI sequence dose not matter, but It's possible to compare PET images before and after contrast agent injection.

  • PDF

Evaluation of Image Quality Change by Truncated Region in Brain PET/CT (Brain PET에서 Truncated Region에 의한 영상의 질 평가)

  • Lee, Hong-Jae;Do, Yong-Ho;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.68-73
    • /
    • 2015
  • Purpose The purpose of this study was to evaluate image quality change by truncated region in field of view (FOV) of attenuation correction computed tomography (AC-CT) in brain PET/CT. Materials and Methods Biograph Truepoint 40 with TrueV (Siemens) was used as a scanner. $^{68}Ge$ phantom scan was performed with and without applying brain holder using brain PET/CT protocol. PET attenuation correction factor (ACF) was evaluated according to existence of pallet in FOV of AC-CT. FBP, OSEM-3D and PSF methods were applied for PET reconstruction. Parameters of iteration 4, subsets 21 and gaussian 2 mm filter were applied for iterative reconstruction methods. Window level 2900, width 6000 and level 4, 200, width 1000 were set for visual evaluation of PET AC images. Vertical profiles of 5 slices and 20 slices summation images applied gaussian 5 mm filter were produced for evaluating integral uniformity. Results Patient pallet was not covered in FOV of AC-CT when without applying brain holder because of small size of FOV. It resulted in defect of ACF sinogram by truncated region in ACF evaluation. When without applying brain holder, defect was appeared in lower part of transverse image on condition of window level 4200, width 1000 in PET AC image evaluation. With and without applying brain holder, integral uniformities of 5 slices and 20 slices summation images were 7.2%, 6.7% and 11.7%, 6.7%. Conclusion Truncated region by small FOV results in count defect in occipital lobe of brain in clinical or research studies. It is necessary to understand effect of truncated region and apply appropriate accessory for brain PET/CT.

  • PDF

The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner (SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구)

  • Min-Gyu Lee;Chanrok Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.

Study for Automatic Exposure Control Technique (AEC) in SPECT/CT for Reducing Exposure Dose and Influencing Image Quality (SPECT/CT에서 자동노출제어(AEC)를 이용함으로써 얻어지는 영상의 질 평가와 피폭선량 감소에 관한 고찰)

  • Yoon, Seok-Hwan;Lee, Sung-Hwan;Cho, Seong-Wook;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.33-38
    • /
    • 2014
  • Purpose Auto exposure control (AEC) in SPECT/CT automatically controls the exposure dose (mA) according to patient's shape and size. The aim of this study was to evaluate the effect of AEC in SPECT/CT on exposure dose reduction and image quality. Materials and Methods The model of SPECT/CT used in this study was Discovery 670 (GE, USA), Smart mA for AEC; and $^{99m}Tc$ as a radioisotope. To compare SPECT and CT images by CT exposure dose variation, we used a standard technique set at 80, 100, 120, 140 kVp, 10, 30, 50, 100, 150, 200, 250 mA, and AEC at 80, 100, 120, 140 kVp, 10-250 mA. To evaluate resolution and contrast of SPECT images, triple line phantom and flangeless Esser PET phantom were used. For CT images, noise and uniformity were checked by anthropomrphic chest phantom. For dose evaluation to find DLP value, anthropomorphic chest phantom was used and the CT protocol of torso was applied by standard technique (120 kVp, 100 mA) and AEC (120 kVp, 10-250 mA). Results When standard and AEC were applied, the resolutions at SPECT images with attenuation correction (AC) were the same as FWHM by center 3.65 mm, left 3.48 mm, right 3.61 mm. Contrasts of standard and AEC showed no significant difference: standard 53.5, 29.8, 22.5, 15.8, 6.0, AEC 53.5, 29.6, 22.4, 15.7, 6.1 In CT images, noise values at standard and AEC were 15.4 and 18.5 respectively. The application of AEC increases noise but the value of coefficient variation were 33.8, 24.9 respectively, obtaining uniform noise image. The values of DLP at standard and AEC were 426.78 and 352.09 each, which shows that the application of AEC decreases exposure dose more than standard by approximately 18%. Conclusion The results of our study show that there was no difference of AC in SPECT images based on the CT exposure dose variation at SPECT/CT images. It was found that the increased CT exposure dose leads to the improvement of CT image quality but also increases the exposure dose. Thus, the use of AEC in SPECT/CT contributes to obtaining equal AC SPECT images, and uniform noise in CT images while reducing exposure dose.

  • PDF

Comparison of True and Virtual Non-Contrast Images of Liver Obtained with Single-Source Twin Beam and Dual-Source Dual-Energy CT (간의 단일선원 Twin Beam과 이중선원 이중에너지 전산화단층촬영의 비조영증강 영상과 가상 비조영증강 영상의 비교 연구)

  • Jeong Sub Lee;Guk Myung Choi;Bong Soo Kim;Su Yeon Ko;Kyung Ryeol Lee;Jeong Jae Kim;Doo Ri Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.170-184
    • /
    • 2023
  • Purpose To assess the magnitude of differences between attenuation values of the true non-contrast image (TNC) and virtual non-contrast image (VNC) derived from twin-beam dual-energy CT (tbDECT) and dual-source DECT (dsDECT). Materials and Methods This retrospective study included 62 patients who underwent liver dynamic DECT with tbDECT (n = 32) or dsDECT (n = 30). Arterial VNC (AVNC), portal VNC (PVNC), and delayed VNC (DVNC) were reconstructed using multiphasic DECT. Attenuation values of multiple intra-abdominal organs (n = 11) on TNCs were subsequently compared to those on multiphasic VNCs. Further, we investigated the percentage of cases with an absolute difference between TNC and VNC of ≤ 10 Hounsfield units (HU). Results For the mean attenuation values of TNC and VNC, 33 items for each DECT were compared according to the multiphasic VNCs and organs. More than half of the comparison items for each DECT showed significant differences (tbDECT 17/33; dsDECT 19/33; Bonferroni correction p < 0.0167). The percentage of cases with an absolute difference ≤ 10 HU was 56.7%, 69.2%, and 78.6% in AVNC, PVNC, and DVNC in tbDECT, respectively, and 70.5%, 78%, and 78% in dsDECT, respectively. Conclusion VNCs derived from the two DECTs were insufficient to replace TNCs because of the considerable difference in attenuation values.

The Difference of Standardized Uptake Value on PET-CT According to Change of CT Parameters (PET-CT에서 CT의 관전압 및 관전류에 따른 SUV값의 변화)

  • Shin, Gyoo-Seul;Dong, Kyeong-Rae
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2007
  • Purpose : There is difference between PET and PET/CT method on their transmission image for attenuation correction. The CT image is used for attenuation correction on PET/CT and the parameters of CT may be affected on PET image. We performed the phantom study to evaluate whether the change of CT parameters(kilovolts peak and milliampere) affect standardized uptake value(SUV) on PET image. Material and Method: The data spectrum lung phantom containing diluted [18F]fluorodeoxyglucose ([18F]FDG) solution(1.909 mCi for phantom 1, $913\;{\mu}Ci$ for phantom 2) was used. The CT images of phantom were acquired with varying parameters (80, 100, 120, 140 for kVp, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for mA). The PET images were reconstructed with the each CT images and SUVs were compared. Result : The SUVs of phantom 1 reconstructed with each 80, 100, 120 and 140 kVp showed $12.26{\pm}0.009$, $12.27{\pm}0.005$, $12.27{\pm}0.006$ and $12.27{\pm}0.009$, respectively. The SUVs of phantom 2 revealed $4.52{\pm}0.043$, $4.53{\pm}0.004$, $4.52{\pm}0.007$ and $4.52{\pm}0.005$ with elevation of voltage. There was no statistically significant difference of SUVs between groups based on various kVp. Also SUVs of phantom 1 and 2 showed no significant change with elevation of milliampere in CT parameter. Conclusion : The parameters of CT did not significantly affect SUV on PET image in our study. Therefore we can apply various parameters of CT appropriated for clinical conditions without significant change of SUV on PET CT image.

  • PDF

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF