• Title/Summary/Keyword: CSTR model

Search Result 22, Processing Time 0.015 seconds

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.

Production of Acetate from Waste Gas using Peptostreptococcus productus (Peptostreptococcus productus를 이용한 산업체 부생가스로부터 아세테이트 생산)

  • 강환구;전희진
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.188-194
    • /
    • 2000
  • The anaerobic bacterium P. productus was known to produce acetate from CO, C02 and H2. In this research the acetate f formation from waste gas was studied. For this research, kinetic parameter study on CO conversion were carried out. From t this study maximum CO conversion rate of 39.3 mmol/L . hr . 0.0 and Km of 0.578 atm were obtained. Also the effect of c CO refreshment, N source, initial pH and c비ture temperature on acetate formation were studied. Acetate formation in 5L lab s scale fermenter was tested and specific acetate production rate of 0.48 g/L-hr-O.O. was obtained and the acetate c concentration was 21 g/L.

  • PDF