• Title/Summary/Keyword: CSEOF analysis

Search Result 8, Processing Time 0.028 seconds

Evaluation of Seasonal Characteristic of Precipitation Data in Korea by Applying CSEOF analysis (CSEOF 분석을 이용한 국내 강수의 계절적 순환 특성 평가)

  • Cho, Eunsaem;Song, Sung-uk;Na, Wooyoung;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.21-21
    • /
    • 2019
  • 본 연구에서는 국내 주요 종관기상관측장비(Automated Surface Observing System; ASOS)의 강수 자료에 CSEOF 분석(Cyclo-stationary Empirical Orthogonal Function Analysis)을 적용하여 주요 성분(principle component)을 추출한 후 이를 분석하여 국내 강수의 계절적 순환 특성을 평가고자 하였다. ASOS 자료로는 전국 131개의 ASOS 중에 40년 이상의 월 강수량 자료가 구축되어 있는 47개 지점의 자료를 이용하였다. 수집한 자료의 기간은 1978년부터 2018년까지이다. 강수 자료의 월별 공간적인 강수 분포 특성을 파악하기 위해 시간적인 순환성을 고려한 CSEOF 분석을 수행하였다. 강수자료의 주성분을 추출해본 결과, CSEOF 분석의 경우 첫 번째 CSEOF 외의 다른 CSEOF들의 원자료 설명 비율 또한 작지 않게 나타나 다양한 강수 변동 특성을 평가할 수 있음을 확인하였다. 8월의 2nd CSEOF는 한반도 전체의 강수가 감소하는 것으로 나타났으며, 이는 라니냐가 7-8월 한반도 강수에 미치는 영향과 유사하다. 아울러 9월의 2nd CSEOF 결과 또한 남부를 중심으로 전체적으로 감소하는 경향이 나타남. 이는 엘리뇨 발생 시 9월의 강수 패턴과 비슷한 것으로 확인되었다. 뿐만 아니라, 우리나라에 영향을 미친 주요 태풍과 CSEOF의 상관관계도 검증할 수 있었으며, 장마와의 관계도 발견할 수 있었다. 향후, CSEOF 분석 결과에 해석방법이 개발된다면, 보다 다각적인 측면에서의 강수 계절적 순환 특성 평가가 이루어 질 수 있을 것으로 기대한다.

  • PDF

Seasonality Analysis of Soil Moisture using Cyclostationary Empirical Orthogonal Function (CSEOF 분석을 이용한 토양수분의 계절성 분석)

  • Cho, Eunsaem;Lee, Hyoungtaek;Lee, Myungseob;Lee, Youngju;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.282-282
    • /
    • 2016
  • 지표수문해석모형이란 전 지구를 대상으로 수문해석 및 예측이 가능한 분포형 수문모형이다. 본 연구에서는 CSEOF(Cyclostationary Empirical Orthogonal Functions) 분석 방법을 이용하여 지표수문해석 모형 중 하나인 VIC(Variable Infiltration Capacity)모형의 토양수분 모의 성능을 평가해보고자 한다. 이를 위하여 먼저 남한에 대한 VIC 모형으로 모의한 토양수분 예측 결과와 관측자료를 수집하였다. 모의 성능 평가 기간은 1976년부터 2006년까지이다. 이후 본 연구에서는 수집된 VIC 모형의 예측 결과와 관측 자료에 대한 CSEOF 분석을 수행하여 각 자료의 월별 주된 변동 특성을 추출하였다. VIC 모형의 예측 결과와 관측자료의 상관관계는 CSEOF 분석 결과에 대한 Pattern Correlation으로 정량화되었다. 이와 더불어 본 연구에서는 모형의 모의 성능 평가에 주로 사용되는 NRMSE(Nomalized Root Mean Square Error)를 산정하여 예측 결과의 오차를 평가하였다. Pattern Correlation과 NRMSE를 모두 고려하여 VIC 모형의 성능을 평가해본 결과, 건기에 해당하는 기간과 우기에 해당하는 기간의 모의 성능이 다르게 나타났다. 본 연구의 결과는 추후에 지표수문해석 모형의 예측 결과를 이용하는 기후변화 관련 연구에 활용될 수 있을 것으로 판단된다.

  • PDF

Investigation of Korean Precipitation Variability using EOFs and Cyclostationary EOFs (EOF와 CSEOF를 이용한 한반도 강수의 변동성 분석)

  • Kim, Gwang-Seob;Sun, Ming-Dong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1260-1264
    • /
    • 2009
  • Precipitation time series is a mixture of complicate fluctuation and changes. The monthly precipitation data of 61 stations during 36 years (1973-2008) in Korea are comprehensively analyzed using the EOFs technique and CSEOFs technique respectively. The main motivation for employing this technique in the present study is to investigate the physical processes associated with the evolution of the precipitation from observation data. The twenty-five leading EOF modes account for 98.05% of the total monthly variance, and the first two modes account for 83.68% of total variation. The first mode exhibits traditional spatial pattern with annual cycle of corresponding PC time series and second mode shows strong North South gradient. In CSEOF analysis, the twenty-five leading CSEOF modes account for 98.58% of the total monthly variance, and the first two modes account for 78.69% of total variation, these first two patterns' spatial distribution show monthly spatial variation. The corresponding mode's PC time series reveals the annual cycle on a monthly time scale and long-term fluctuation and first mode's PC time series shows increasing linear trend which represents that spatial and temporal variability of first mode pattern has strengthened. Compared with the EOFs analysis, the CSEOFs analysis preferably exhibits the spatial distribution and temporal evolution characteristics and variability of Korean historical precipitation.

  • PDF

Analysis and Validation of Soil Moisture Data over the Korean Peninsula Simulated by the VIC Model (VIC 모형을 이용하여 모의된 한반도 토양수분 자료의 분석 및 검증)

  • Cho, Eunsaem;Song, Sung-uk;Yoo, Chulsang
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.52-62
    • /
    • 2017
  • In this study, land surface model was used to simulate the soil moisture of South and North Korea for the past 30 years, and the difference in their variation was analyzed. In addition, satellite observed soil moisture data provided by Soil Moisture CCI was analyzed to evaluate the simulation results of VIC model. For the comparison between the simulated and observed data, the CSEOF analysis was applied to indirectly assess the performance of the VIC model rather than simply comparing soil moisture values. The results of this study are summarized as follows. First, the annual variability of soil moisture showed a similar tendency in both South and North Korea, but it was found that the soil moisture in South Korea was as high as 1%, up to 7%, higher than the soil moisture in North Korea. Secondly, the soil moisture in spring between April to June is similar in South and North Korea, whereas the soil moisture after the rainy season is up to 40% in South Korea, but remains at maximum 32% in North Korea. Third, the overall simulated soil moisture is about 4% smaller than the satellite observed soil moisture, but the degree of increase over the past 30 years is similar to that of satellite observed soil moisture. Finally, a comparison of the CSEOF from the satellite observed soil moisture and the VIC model derived soil moisture showed that the soil moisture from April to June shows a much different pattern from each other. However, in July and October, there was a slight similarity, and it was confirmed that August and September has quite similar patterns.

A Characteristic of Wintertime Snowfall and Minimum Temperature with Respect to Arctic Oscillation in South Korea During 1979~2011 (1979~2011년, 북극진동지수 측면에서의 겨울철 남한지역 신적설과 최저 온도 특성)

  • Roh, Joon-Woo;Lee, Yong Hee;Choi, Reno K.Y.;Lee, Hee Choon
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • A characteristic of snowfall and minimum temperature variability in South Korea with respect to the variability of Arctic Oscillation (AO) was investigated. The climatic snowfall regions of South Korea based on daily new fresh snowfall data of 59 Korea Meteorological Administration (KMA) stations data corresponding to the sign of AO index during December to February 1979~2011 were classified. Especially, the differences between snowfalls of eastern regions and that of western regions in South Korea were seen by each mean 1000hPa geopotential height fields, which is one of physical structure, for the selected cases over the East Asia including the Korean Peninsula. Daily minimum temperature variability of 59 KMA station data and daily AO index during the same period were investigated using Cyclo-stationary empirical orthogonal function (CSEOF) analysis. The first CSEOF of wintertime daily AO index and that of minimum temperature of 59 KMA stations explain 33% and 66% of total variability, respectively. Correlation between principal component time series corresponding to the first CSEOF of AO index and that of temperature at the period of 1990s is over about -0.7 when that of AO index leads about 40 days.

A Study on Statistical Downscaling for Projection of Future Temperature Change simulated by ECHO-G/S over the Korean Peninsula (한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구)

  • Shin, Jinho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Minji
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.107-125
    • /
    • 2009
  • Statistical downscaled surface temperature datasets by employing the cyclostationary empirical orthogonal function (CSEOF) analysis and multiple linear regression method are examined. For evaluating the efficiency of this statistical downscaling method, monthly surface temperature of the ECMWF has been downscaled into monthly temperature having a fine spatial scale of ~20km over the Korean peninsula for the 1973-2000 period. Monthly surface temperature of the ECHOG has also been downscaled into the same spatial scale data for the same period. Comparisons of temperatures between two datasets over the Korean peninsula show that annual mean temperature of the ECMWF is about $2^{\circ}C$ higher than that of the ECHOG. After applying to the statistical downscaling method, the difference of two annual mean temperatures reduces less than $1^{\circ}C$ and their spatial patterns become even close to each other. Future downscaled data shows that annual temperatures in the A1B scenario will increase by $3.5^{\circ}C$ by the late 21st century. The downscaled data are influenced by the ECHOG as well as observation data which includes effects of complicated topography and the heat island.

An Uncertainty Assessment of Temperature and Precipitation over East Asia (동아시아 기온과 강수의 불확실성 평가)

  • Shin, Jin-Ho;Kim, Min-Ji;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.299-303
    • /
    • 2008
  • In this study, an uncertainty assessment for surface air temperature(T2m) and precipitation(PCP) over East Asia is carried out. The data simulated by the intergovermental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) Atmosphere-Ocean coupled general circulation Model (AOGCM) are used to assess the uncertainty. Examination of the seasonal uncertainty of T2m and PCP variabilities shows that spring-summer cold bias and fall warm bias of T2m are found over both East Asia and the Korea peninsula. In contrast, distinctly summer dry bias and winter-spring wet bias of PCP over the Korea peninsula is found. To investigate the PCP seasonal variability over East Asia, the cyclostationary empirical orthogonal function(CSEOF) analysis is employed. The CSEOF analysis can extract physical modes (spatio-temporal patterns) and their undulation (PC time series) of PCP, showing the evolution of PCP. A comparison between spatio-temporal patterns of observed and modeled PCP anomalies shows that positive PCP anomalies located in northeastern China (north of Korea) of the multi-model ensemble(MME) cannot explain properly the contribution to summer monsoon rainfalls across Korea and Japan. The uncertainty of modeled PCP indicates that there is disagreement between observed and MME anomalies. The spatio-temporal deviation of the PCP is significantly associated with lower- and upper-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly contribute to summer rainfalls. These lower- and upper-level circulations physically consistent with PCP give a insight of the reason why differences between modeled and observed PCP occur.

  • PDF

An Uncertainty Assessment for Annual Variability of Precipitation Simulated by AOGCMs Over East Asia (AOGCM에 의해 모의된 동아시아지역의 강수 연변동성에 대한 불확실성 평가)

  • Shin, Jinho;Lee, Hyo-Shin;Kim, Minji;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.111-130
    • /
    • 2010
  • An uncertainty assessment for precipitation datasets simulated by Atmosphere-Ocean Coupled General Circulation Model (AOGCM) is conducted to provide reliable climate scenario over East Asia. Most of results overestimate precipitation compared to the observational data (wet bias) in spring-fall-winter, while they underestimate precipitation (dry bias) in summer in East Asia. Higher spatial resolution model shows better performances in simulation of precipitation. To assess the uncertainty of spatiotemporal precipitation in East Asia, the cyclostationary empirical orthogonal function (CSEOF) analysis is applied. An annual cycle of precipitation obtained from the CSEOF analysis accounts for the biggest variability in its total variability. A comparison between annual cycles of observed and modeled precipitation anomalies shows distinct differences: 1) positive precipitation anomalies of the multi-model ensemble (MME) for 20 models (thereafter MME20) in summer locate toward the north compared to the observational data so that it cannot explain summer monsoon rainfalls across Korea and Japan. 2) The onset of summer monsoon in MME20 in Korean peninsula starts earlier than observed one. These differences show the uncertainty of modeled precipitation. Also the comparison provides the criteria of annual cycle and correlation between modeled and observational data which helps to select best models and generate a new MME, which is better than the MME20. The spatiotemporal deviation of precipitation is significantly associated with lower-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly are strongly associated with summer rainfalls. These lower-level circulations physically consistent with precipitation give insight into description of the reason in the monsoon of East Asia why behaviors of individually modeled precipitation differ from that of observation.