• 제목/요약/키워드: CS-RANSAC

검색결과 5건 처리시간 0.021초

효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법 (Feature Point Filtering Method Based on CS-RANSAC for Efficient Planar Homography Estimating)

  • 김대우;윤의녕;조근식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권6호
    • /
    • pp.307-312
    • /
    • 2016
  • 증강현실 분야에서 호모그래피(Homography)를 이용한 비마커 기반의 객체 추적 기술(Markerless tracking)은 카메라의 방향, 위치를 파악하여 실세계의 영상에 가상의 객체를 정확하고 자연스럽게 증강할 수 있는 기술이다. 이와 같은 호모그래피를 추정하기 위한 방법으로 RANSAC 알고리즘이 많이 사용되고 있으며, 최근 기존의 RANSAC 알고리즘에 제약 조건 문제(Constraint Satisfaction Problem)를 적용하여 정확도를 향상시키고, 처리시간을 줄인 CS-RANSAC 알고리즘에 대한 연구가 진행되고 있다. 하지만 CS-RANSAC 알고리즘은 샘플링 단계에서 정확도가 낮은 호모그래피를 추정하게 하는 특징점이 선택되어 불필요한 연산으로 인해 알고리즘의 효율성이 저하되는 경우가 있다. 따라서 본 논문에서는 효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법을 제안한다. 제안하는 방법은 호모그래피 평가 단계에서 Symmetric Transfer Error로 정확도가 높은 호모그래피를 추정하게 하는 특징점인지를 평가하고 불필요한 특징점들을 다음 샘플링 단계에서 제외함으로써 정확도를 향상키고 처리시간을 줄였다. 제안하는 CS-RANSAC 기반의 특징점 필터링 방법의 성능평가를 위하여 제안하는 방법을 적용한 알고리즘과 기존의 RANSAC 알고리즘, CS-RANSAC 알고리즘의 수행시간과 오차율(Symmetric Transfer Error), 참정보 포함비율을 비교하였다. 실험 결과 본 논문에서 제안한 방법이 기존 CS-RANSAC 알고리즘보다 수행시간이 평균적으로 약 5% 단축되었고 오차율은 약 14% 줄어들어 더욱 정확한 호모그래피를 추정 할 수 있게 되었다.

효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법 (Feature Point Filltering Method based on CS-RANSAC for Efficient Planar Homography Estimating)

  • 김대우;윤의녕;조근식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1451-1454
    • /
    • 2015
  • RANSAC 알고리즘은 컴퓨터 비전 분야에서 호모그래피 행렬을 추정하는데 많이 사용되고 있다. CS-RANSAC 알고리즘은 RANSAC 알고리즘에 제약조건을 설정하여 정확도를 높인 알고리즘이지만 샘플링 단계에서 정확한 호모그래피를 추정하는데 불필요한 특징점을 선택하여 알고리즘의 효율성을 저하시키는 경우가 있다. 따라서 본 논문에서는 Symmetric Transfer Error로 특징점이 참정보인지 평가하고 불필요한 특징점을 필터링하여 CS-RANSAC 알고리즘의 속도와 정확도를 증가시키는 방법을 제안한다. 실험은 제안하는 알고리즘의 수행시간과 오차율을 비교하였고, 실험 결과 본 논문에서 제안한 방법이 기존 CS-RANSAC 알고리즘보다 수행시간이 평균적으로 약 5% 단축되었고 정확도는 약 14% 향상 되었다.

Automatic Determination of Constraint Parameter for Improving Homography Matrix Calculation in RANSAC Algorithm

  • Chandra, Devy;Lee, Kee-Sung;Jo, Geun-Sik
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.830-833
    • /
    • 2014
  • This paper proposes dynamic constraint parameter to filter out degenerate configurations (i.e. set of collinear or adjacent features) in RANSAC algorithm. We define five different groups of image based on the feature distribution pattern. We apply the same linear and distance constraints for every image, but we use different constraint parameter for every group, which will affect the filtering result. An evaluation is done by comparing the proposed dynamic CS-RANSAC algorithm with the classic RANSAC and regular CS-RANSAC algorithms in the calculation of a homography matrix. The experimental results show that dynamic CS-RANSAC algorithm provides the lowest error rate compared to the other two algorithms.

K-Means 클러스터링을 적용한 향상된 CS-RANSAC 알고리즘 (Improved CS-RANSAC Algorithm Using K-Means Clustering)

  • 고승현;윤의녕;;조근식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권6호
    • /
    • pp.315-320
    • /
    • 2017
  • 이미지를 기반으로 하는 증강현실 시스템에서 가상의 객체를 실제 영상에 저작할 때 생기는 이질감을 줄이기 위해서는 실제 영상에 저작된 가상객체의 방향과 위치에 대해 정확하게 추정을 해야 하며, 이때 호모그래피를 사용한다. 호모그래피를 추정하기 위해서는 SURF와 같은 특징점을 추출하고 추출된 특징점들을 통해 호모그래피 행렬을 추정한다. 호모그래피 행렬의 추정을 위해서 RANSAC 알고리즘이 주로 사용되고 있으며, 특히 RANSAC에 제약 조건 만족 문제(Constraint Satisfaction Problem)와 여기에 사용되는 제약조건을 동적으로 적용하여 속도와 정확도를 높인 DCS-RANSAC 알고리즘이 연구되었다. DCS-RANSAC 알고리즘에서 사용된 이미지 그룹 데이터는 수동적인 방법을 통해 직관적으로 분류되어 있지만 특징점 분포 패턴이 다양하지 않고, 이미지들을 정확하게 분류하기가 어려워서 이로 인해 알고리즘의 성능이 저하되는 경우가 있다. 따라서 본 논문에서는 K-means 클러스터링을 적용하여 이미지들을 자동으로 분류하고 각 이미지 그룹마다 각기 다른 제약조건을 적용하는 KCS-RANSAC 알고리즘을 제안한다. 제안하는 알고리즘은 머신러닝 기법인 K-means 클러스터링을 사용하여 전처리 단계에서 이미지를 특징점 분포 패턴에 따라 자동으로 분류하고, 분류된 이미지에 제약조건을 적용하여 알고리즘의 속도와 정확도를 향상시켰다. 실험 결과 본 논문에서 제안하는 KCS-RANSAC이 DCS-RANSAC 알고리즘에 비해 수행시간이 약 15% 단축되었고, 오차율은 약 35% 줄어들었으며, 참정보 비율은 약 14% 증가되었다.

머신러닝 기법올 적용한 CS-RANSAC 알고리즘 (CS-RANSAC Algorithm using Machine Learning Technique)

  • 고승현;윤의녕;주마벡;조근식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.632-635
    • /
    • 2016
  • 증강현실에서 영상과 증강된 콘텐츠 간의 이질감을 줄이기 위해서 정확한 호모그래피 행렬을 추정해야 하며, 정확한 호모그래피 행렬을 추정할때 RANSAC 알고리즘이 널리 사용된다. 그러나 RANSAC 알고리즘은 랜덤 샘플링 과정을 반복적으로 거치기 때문에 불필요한 연산 과정이 발생하고 이로 인해 알고리즘의 효율이 저하된다. 이러한 단점을 극복하기 위해 DCS-RANSAC 알고리즘이 제안되었다. 제안된 DCS-RANSAC 알고리즘은 이미지를 특징점 분포 패턴에 따라 그룹으로 분류하고 각 그룹에 제약조건 문제를 적용하여 불필요한 연산 과정을 줄이고 정확도를 향상시킨 알고리즘이다. 그러나 DCS-RANSAC 알고리즘에서 사용된 이미지 그룹 데이터는 수동적인 방법을 통해 직관적으로 분류되어 있지만 특징점 분포 패턴이 다양하지 않아 분류시 정확도가 저하되는 경우가 있다. 위의 문제점을 해결하기 위해 본 논문에서는 머신러닝 기법을 통해 이미지들을 자동으로 분류하고 각 그룹마다 각기 다른 제약조건을 적용하는 MCS-RANSAC 알고리즘을 제안한다. 제안하는 알고리즘은 머신러닝 기법을 사용하여 전처리 단계에서 이미지를 분류하고 분류된 이미지에 제약조건을 적용시켜 알고리즘의 처리시간을 줄이고 정확도를 향상시켰다. 실험 결과 본 논문에서 제안하는 MCS-RANSAC은 DCS-RANSAC 알고리즘에 비해 수행시간이 약 6% 단축되었고 호모그래피 오차율은 약 15% 줄어들었으며 참정보 비율은 2.8% 증가한 것으로 확인되었다.